
JAVA PROGRAMMING:  MANUAL 

1 
 

1. Java Introduction 
 
What is Java? 
Java is a popular programming language, created in 1995. 
It is owned by Oracle, and more than 3 billion devices run Java. 
It is used for: 

 Mobile applications (especially Android apps) 

 Desktop applications 

 Web applications 

 Web servers and application servers 

 Games 

 Database connection 

 And much, much more! 
 
Why Use Java? 

 Java works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc.) 

 It is one of the most popular programming language in the world 

 It has a large demand in the current job market 

 It is easy to learn and simple to use 

 It is open-source and free 

 It is secure, fast and powerful 

 It has a huge community support (tens of millions of developers) 

 Java is an object-oriented language which gives a clear structure to programs and allows 
code to be reused, lowering development costs 

 As Java is close to C++ and C#, it makes it easy for programmers to switch to Java or vice 
versa 

 

2. Java Syntax 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println("Hello World"); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". Classes serve as blueprints for 

creating objects in Java. 

 public static void main(String[] args): Declares a public static method named "main". It is 
the entry point of the program and gets executed when the program runs. It takes an array 
of strings called "args" as a parameter. 

 System.out.println("Hello World");: Prints the string "Hello World" to the console. The 

System.out.println() method is used to output text or values to the console. 
  



JAVA PROGRAMMING:  MANUAL 

2 
 

3. Java Output / Print 
 
Print Text 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println("Hello World!"); 
    System.out.println("I am learning Java."); 
    System.out.println("It is awesome!"); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". 

 public static void main(String[] args): Declares a public static method named "main" that 
serves as the entry point of the program. It takes an array of strings called "args" as a 
parameter. 

 System.out.println("Hello World!");: Prints the string "Hello World!" to the console. 

 System.out.println("I am learning Java.");: Prints the string "I am learning Java." to the 
console. 

 System.out.println("It is awesome!");: Prints the string "It is awesome!" to the console. 
 
Double Quotes 
 

public class Main { 
  public static void main(String[] args) { 
   System.out.println("This sentence will work!"); 
    System.out.println("This sentence will NOT produce an error"); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". 

 public static void main(String[] args): Declares a public static method named "main" that 
serves as the entry point of the program. It takes an array of strings called "args" as a 
parameter. 

 System.out.println("This sentence will work!");: Prints the string "This sentence will 
work!" to the console. 

 System.out.println("This sentence will NOT produce an error");: Prints the string "This 
sentence will NOT produce an error" to the console. 

 



JAVA PROGRAMMING:  MANUAL 

3 
 

The Print() Method 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.print("Hello World! "); 
    System.out.print("I will print on the same line."); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". 

 public static void main(String[] args): Declares a public static method named "main" that 
serves as the entry point of the program. It takes an array of strings called "args" as a 
parameter. 

 System.out.print("Hello World! ");: Prints the string "Hello World!" to the console 
without adding a new line character. The cursor remains on the same line after printing. 

 System.out.print("I will print on the same line.");: Prints the string "I will print on the 
same line." to the console without adding a new line character. It continues printing on 
the same line as the previous statement. 

 
Print Numbers 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(3); 
    System.out.println(358); 
    System.out.println(50000); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". 

 public static void main(String[] args): Declares a public static method named "main" that 
serves as the entry point of the program. It takes an array of strings called "args" as a 
parameter. 

 System.out.println(3);: Prints the number 3 to the console. 

 System.out.println(358);: Prints the number 358 to the console. 

 System.out.println(50000);: Prints the number 50000 to the console. 
 
  



JAVA PROGRAMMING:  MANUAL 

4 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(3 + 3); 
    System.out.println(2 * 5); 
  } 
} 

 

 
 
 public class Main: Declares a public class named "Main". 

 public static void main(String[] args): Declares a public static method named "main" that 
serves as the entry point of the program. It takes an array of strings called "args" as a 
parameter. 

 System.out.println(3 + 3);: Evaluates the expression 3 + 3, which is the addition of 3 and 
3, and prints the result (6) to the console. 

 System.out.println(2 * 5);: Evaluates the expression 2 * 5, which is the multiplication of 
2 and 5, and prints the result (10) to the console. 

 
 

4. Java Comments 
 
Java Comments 
Comments can be used to explain Java code, and to make it more readable. It can also be used 
to prevent execution when testing alternative code. 

 
Single-line Comments 
Single-line comments start with two forward slashes (//). 
Any text between // and the end of the line is ignored by Java (will not be executed). 
 
This example uses a single-line comment before a line of code: 
 

public class Main { 
  public static void main(String[] args) { 
    // This is a comment 
    System.out.println("Hello World"); 
  } 
} 

 

 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println("Hello World"); // This is a comment 
  } 
} 

 

 



JAVA PROGRAMMING:  MANUAL 

5 
 

5. Java Variables 
 
Variables are containers for storing data values. 
In Java, there are different types of variables, for example: 
 

 String - stores text, such as "Hello". String values are surrounded by double quotes 

 int - stores integers (whole numbers), without decimals, such as 123 or -123 

 float - stores floating point numbers, with decimals, such as 19.99 or -19.99 

 char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single 
quotes 

 boolean - stores values with two states: true or false 
 
Declaring (Creating) Variables 
To create a variable, you must specify the type and assign it a value. 
Where type is one of Java's types (such as int or String), and variableName is the name of the 
variable (such as x or name). The equal sign is used to assign values to the variable. 
 

Create a variable called name of type String and assign it the value "John": 
 

public class Main { 
  public static void main(String[] args) { 
    String name = "John"; 
    System.out.println(name); 
  } 
} 

 

 
 
Create a variable called myNum of type int and assign it the value 15: 
 

public class Main { 
  public static void main(String[] args) { 
    int myNum = 15; 
    System.out.println(myNum); 
  } 
} 

 

 
 
You can also declare a variable without assigning the value, and assign the value later: 
 

public class Main { 
  public static void main(String[] args) { 
    int myNum; 
    myNum = 15; 
    System.out.println(myNum); 
  } 
} 
 

 



JAVA PROGRAMMING:  MANUAL 

6 
 

If you assign a new value to an existing variable, it will overwrite the previous value. 
Change the value of myNum from 15 to 20: 
 

public class Main { 
  public static void main(String[] args) { 
    int myNum = 15; 
    myNum = 20;  // myNum is now 20 
    System.out.println(myNum); 
  } 
} 

 

 
 
Final Variables 
If you don't want others (or yourself) to overwrite existing values, use the final keyword (this 
will declare the variable as "final" or "constant", which means unchangeable and read-only): 
 

public class Main { 
  public static void main(String[] args) { 
    final int myNum = 15; 
    myNum = 20; // will generate an error 
    System.out.println(myNum); 
  } 
} 

 

 
 
Other Types 
A demonstration of how to declare variables of other types: 
 

int myNum = 5; 
float myFloatNum = 5.99f; 
char myLetter = 'D'; 
boolean myBool = true; 
String myText = "Hello"; 

 
Display Variables 
The println() method is often used to display variables. 
To combine both text and a variable, use the + character: 
 

public class Main { 
  public static void main(String[] args) { 
    String name = "John"; 
    System.out.println("Hello " + name); 
  } 
} 

 



JAVA PROGRAMMING:  MANUAL 

7 
 

You can also use the + character to add a variable to another variable: 
 

public class Main { 
  public static void main(String[] args) { 
    String firstName = "John "; 
    String lastName = "Doe"; 
    String fullName = firstName + lastName; 
    System.out.println(fullName);   
  } 
} 

 

 
 
For numeric values, the + character works as a mathematical operator (notice that we 
use int (integer) variables here): 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 6; 
    System.out.println(x + y); // Print the value of x + y 
  } 
} 

 

 
 
From the example above, you can expect: 
 x stores the value 5 
 y stores the value 6 
 Then we use the println() method to display the value of x + y, which is 11 
 
Declare Many Variables 
To declare more than one variable of the same type, you can use a comma-separated list: 
 
Instead of writing: 
 

int x = 5; 
int y = 6; 
int z = 50; 
System.out.println(x + y + z); 

 
You can simply write: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 5, y = 6, z = 50; 
    System.out.println(x + y + z); 
  } 
} 

 

 



JAVA PROGRAMMING:  MANUAL 

8 
 

One Value to Multiple Variables 
You can also assign the same value to multiple variables in one line: 
 

public class Main { 
  public static void main(String[] args) { 
    int x, y, z; 
    x = y = z = 50; 
    System.out.println(x + y + z); 
  } 
} 

 

 
 
Identifiers 
All Java variables must be identified with unique names. 
These unique names are called identifiers. 
 
Identifiers can be short names (like x and y) or more descriptive names (age, sum, 
totalVolume). 
 
Note: It is recommended to use descriptive names in order to create understandable and 
maintainable code: 
 

public class Main { 
  public static void main(String[] args) { 
    // Good 
    int minutesPerHour = 60; 
 
    // OK, but not so easy to understand what m actually is 
    int m = 60; 
     
    System.out.println(minutesPerHour); 
    System.out.println(m); 
  } 
} 

 

 
 
The general rules for naming variables are: 
 Names can contain letters, digits, underscores, and dollar signs 
 Names must begin with a letter 
 Names should start with a lowercase letter and it cannot contain whitespace 
 Names can also begin with $ and _ (but we will not use it in this tutorial) 
 Names are case sensitive ("myVar" and "myvar" are different variables) 
 Reserved words (like Java keywords, such as int or boolean) cannot be used as names 
 
  



JAVA PROGRAMMING:  MANUAL 

9 
 

6. Java Data Types 
 
A variable in Java must be a specified data type: 
 

public class Main { 
  public static void main(String[] args) { 
    int myNum = 5;               // integer (whole number) 
    float myFloatNum = 5.99f;    // floating point number 
    char myLetter = 'D';         // character 
    boolean myBool = true;       // boolean 
    String myText = "Hello";     // String     
    System.out.println(myNum); 
    System.out.println(myFloatNum); 
    System.out.println(myLetter); 
    System.out.println(myBool); 
    System.out.println(myText); 
  } 
} 

 

 
 
Data types are divided into two groups: 
 Primitive data types - includes byte, short, int, long, float, double, boolean and char 
 Non-primitive data types - such as String, Arrays and Classes 
 
Primitive Data Types 
A primitive data type specifies the size and type of variable values, and it has no additional 
methods. 
There are eight primitive data types in Java: 

 

Data Type Size Description 

byte 1 byte Stores whole numbers from -128 to 127 

short 2 bytes Stores whole numbers from -32,768 to 32,767 

int 4 bytes Stores whole numbers from -2,147,483,648 to 
2,147,483,647 

long 8 bytes Stores whole numbers from -
9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807 



JAVA PROGRAMMING:  MANUAL 

10 
 

float 4 bytes Stores fractional numbers. Sufficient for storing 6 
to 7 decimal digits 

double 8 bytes Stores fractional numbers. Sufficient for storing 
15 decimal digits 

boolean 1 bit Stores true or false values 

char 2 bytes Stores a single character/letter or ASCII values 

 
Numbers 
Primitive number types are divided into two groups: 
 
Integer types stores whole numbers, positive or negative (such as 123 or -456), without 
decimals. Valid types are byte, short, int and long. Which type you should use, depends on 
the numeric value. 
 
Floating point types represents numbers with a fractional part, containing one or more 
decimals. There are two types: float and double. 
 
Integer Types 
 
Byte 
The byte data type can store whole numbers from -128 to 127. This can be used instead 
of int or other integer types to save memory when you are certain that the value will be within 
-128 and 127: 
 

public class Main { 
  public static void main(String[] args) { 
    byte myNum = 100; 
    System.out.println(myNum);   
  } 
} 

 

 
 
Short 
The short data type can store whole numbers from -32768 to 32767: 
 

public class Main { 
  public static void main(String[] args) { 
    short myNum = 5000; 
    System.out.println(myNum);   
  } 
} 

 

 
 



JAVA PROGRAMMING:  MANUAL 

11 
 

Int 
The int data type can store whole numbers from -2147483648 to 2147483647. In general, and 
in our tutorial, the int data type is the preferred data type when we create variables with a 
numeric value. 
 

public class Main { 
  public static void main(String[] args) { 
    int myNum = 100000; 
    System.out.println(myNum);   
  } 
} 

 

 
 
Long 
The long data type can store whole numbers from -9223372036854775808 to 
9223372036854775807. This is used when int is not large enough to store the value. Note that 
you should end the value with an "L": 
 

public class Main { 
  public static void main(String[] args) { 
    long myNum = 15000000000L; 
    System.out.println(myNum);   
  } 
} 

 

 
 
Floating Point Types 
You should use a floating point type whenever you need a number with a decimal, such as 
9.99 or 3.14515. 
 
The float and double data types can store fractional numbers. Note that you should end the 
value with an "f" for floats and "d" for doubles: 
 
Float Example 
 

public class Main { 
  public static void main(String[] args) { 
    float myNum = 5.75f; 
    System.out.println(myNum);   
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

12 
 

Double Example 
 

public class Main { 
  public static void main(String[] args) { 
    double myNum = 19.99d; 
    System.out.println(myNum);   
  } 
} 

 

 
 
Scientific Numbers 
A floating point number can also be a scientific number with an "e" to indicate the power of 
10: 
 

public class Main { 
  public static void main(String[] args) { 
    float f1 = 35e3f; 
    double d1 = 12E4d; 
    System.out.println(f1); 
    System.out.println(d1);   
  } 
} 

 

 
 
Boolean Types 
Very often in programming, you will need a data type that can only have one of two values, 
like: 
 YES / NO 
 ON / OFF 
 TRUE / FALSE 
 
For this, Java has a boolean data type, which can only take the values true or false: 
 

public class Main { 
  public static void main(String[] args) { 
    boolean isJavaFun = true; 
    boolean isFishTasty = false;     
    System.out.println(isJavaFun); 
    System.out.println(isFishTasty); 
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

13 
 

Characters 
The char data type is used to store a single character. The character must be surrounded by 
single quotes, like 'A' or 'c': 
 

public class Main { 
  public static void main(String[] args) { 
    char myGrade = 'B'; 
    System.out.println(myGrade); 
  } 
} 

 

 
 
Alternatively, if you are familiar with ASCII values, you can use those to display certain 
characters: 
 

public class Main { 
  public static void main(String[] args) { 
    char myVar1 = 65, myVar2 = 66, myVar3 = 67; 
    System.out.println(myVar1); 
    System.out.println(myVar2); 
    System.out.println(myVar3); 
  } 
} 

 

 
 
Strings 
The String data type is used to store a sequence of characters (text). String values must be 
surrounded by double quotes: 
 

public class Main { 
  public static void main(String[] args) { 
    String greeting = "Hello World"; 
    System.out.println(greeting); 
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

14 
 

Non-Primitive Data Types 
Non-primitive data types are called reference types because they refer to objects. 
 
The main difference between primitive and non-primitive data types are: 
 
 Primitive types are predefined (already defined) in Java. Non-primitive types are created 

by the programmer and is not defined by Java (except for String). 

 Non-primitive types can be used to call methods to perform certain operations, while 
primitive types cannot. 

 A primitive type has always a value, while non-primitive types can be null. 

 A primitive type starts with a lowercase letter, while non-primitive types starts with an 
uppercase letter. 

 The size of a primitive type depends on the data type, while non-primitive types have all 
the same size. 

 
Examples of non-primitive types are Strings, Arrays, Classes, Interface, etc. 
 
 
 

7. Java Type Casting 
 
Type casting is when you assign a value of one primitive data type to another type. 
In Java, there are two types of casting: 
 
 Widening Casting (automatically) - converting a smaller type to a larger type size 

byte -> short -> char -> int -> long -> float -> double 
 

 Narrowing Casting (manually) - converting a larger type to a smaller size type 
double -> float -> long -> int -> char -> short -> byte 

 
Widening Casting 
Widening casting is done automatically when passing a smaller size type to a larger size type: 
 

public class Main { 
  public static void main(String[] args) { 
    int myInt = 9; 
    double myDouble = myInt; // Automatic casting: int to double 
 
    System.out.println(myInt); 
    System.out.println(myDouble); 
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

15 
 

Narrowing Casting 
Narrowing casting must be done manually by placing the type in parentheses in front of the 
value: 
 

public class Main { 
  public static void main(String[] args) { 
    double myDouble = 9.78d; 
    int myInt = (int) myDouble; // Explicit casting: double to int 
 
    System.out.println(myDouble); 
    System.out.println(myInt); 
  } 
} 

 

 
 
 

8. Java Operators 
 
Operators are used to perform operations on variables and values. 
In the example below, we use the + operator to add together two values: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 100 + 50; 
    System.out.println(x); 
  } 
} 

 

 
 

Although the + operator is often used to add together two values, like in the example above, 

it can also be used to add together a variable and a value, or a variable and another variable: 
 

public class Main { 
  public static void main(String[] args) { 
    int sum1 = 100 + 50; 
    int sum2 = sum1 + 250; 
    int sum3 = sum2 + sum2; 
    System.out.println(sum1); 
    System.out.println(sum2); 
    System.out.println(sum3);   
  } 
} 

 

 



JAVA PROGRAMMING:  MANUAL 

16 
 

Java divides the operators into the following groups: 
 Arithmetic operators 
 Assignment operators 
 Comparison operators 
 Logical operators 
 Bitwise operators 
 
Arithmetic Operators 
Arithmetic operators are used to perform common mathematical operations. 
 

No Operator Name Description Example 

1 + Addition Adds together two values x + y 

2 - Subtraction Subtracts one value from another x - y 

3 * Multiplication Multiplies two values x * y 

4 / Division Divides one value by another x / y 

5 % Modulus Returns the division remainder x % y 

6 ++ Increment Increases the value of a variable by 1 ++x 

7 -- Decrement Decreases the value of a variable by 1 --x 

 

1 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x + y); 
  } 
} 

8 

2 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x - y); 
  } 
} 

2 
    

3 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x * y); 
  } 
} 

15 

4 public class Main { 
  public static void main(String[] args) { 
    int x = 12; 
    int y = 3; 
    System.out.println(x / y); 
  } 
} 
4 

    

5 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 2; 
    System.out.println(x % y); 
  } 
} 

1 

6 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    ++x; 
    System.out.println(x); 
  } 
} 

6 
    



JAVA PROGRAMMING:  MANUAL 

17 
 

7 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    --x; 
    System.out.println(x); 
  } 
} 

4 

  

 
 
Assignment Operators 
Assignment operators are used to assign values to variables. 
In the example below, we use the assignment operator (=) to assign the value 10 to a variable 
called x: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 10; 
    System.out.println(x); 
  } 
} 

 

 
 

The addition assignment operator (+=) adds a value to a variable: 

 

public class Main { 
  public static void main(String[] args) { 
    int x = 10; 
    x += 5; 
    System.out.println(x); 
  } 
} 
 

 

A list of all assignment operators: 

No Operator Example Same As 

1 = x = 5 x = 5 

2 += x += 3 x = x + 3 

3 -= x -= 3 x = x - 3 

4 *= x *= 3 x = x * 3 

5 /= x /= 3 x = x / 3 

6 %= x %= 3 x = x % 3 



JAVA PROGRAMMING:  MANUAL 

18 
 

7 &= x &= 3 x = x & 3 

8 |= x |= 3 x = x | 3 

9 ^= x ^= 3 x = x ^ 3 

10 >>= x >>= 3 x = x >> 3 

11 <<= x <<= 3 x = x << 3 

 

1 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    System.out.println(x); 
  } 
} 

5 

2 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x += 3; 
    System.out.println(x); 
  } 
} 

8 
    

3 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x -= 3; 
    System.out.println(x); 
  } 
} 

2 

4 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x *= 3; 
    System.out.println(x); 
  } 
} 

15 
    

5 public class Main { 
  public static void main(String[] args) { 
    double x = 5; 
    x /= 3; 
    System.out.println(x); 
  } 
} 

1.6666666666666667 

6 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x %= 3; 
    System.out.println(x); 
  } 
} 

2 
    

7 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x &= 3; 
    System.out.println(x); 
  } 
} 

1 

8 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x |= 3; 
    System.out.println(x); 
  } 
} 

7 
    

9 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x ^= 3; 
    System.out.println(x); 
  } 
} 

6 

10 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x >>= 3; 
    System.out.println(x); 
  } 
} 

0 
    



JAVA PROGRAMMING:  MANUAL 

19 
 

11 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    x <<= 3; 
    System.out.println(x); 
  } 
} 

40 

  

 
 
Comparison Operators 
Comparison operators are used to compare two values (or variables). This is important in 
programming, because it helps us to find answers and make decisions. 
 
The return value of a comparison is either true or false. These values are known as Boolean 
values. 
 
In the following example, we use the greater than operator (>) to find out if 5 is greater than 
3: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x > y); // returns true, because 5 is higher than 3 
  } 
} 

 

 
 

No Operator Name Example 

1 == Equal to x == y 

2 != Not equal x != y 

3 > Greater than x > y 

4 < Less than x < y 

5 >= Greater than or equal to x >= y 

6 <= Less than or equal to x <= y 

 
 
 
 
 
 
 
 



JAVA PROGRAMMING:  MANUAL 

20 
 

1 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x == y); // returns 
false because 5 is not equal to 3 
  } 
} 

False 

2 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x != y); // returns 
true because 5 is not equal to 3 
  } 
} 

True 
    

3 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x > y); // returns 
true because 5 is greater than 3 
  } 
} 

True 

4 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x < y); // returns 
false because 5 is not less than 3 
  } 
} 

False 
    

5 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x >= y); // returns 
true because 5 is greater, or equal, to 3 
  } 
} 
True 

6 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 3; 
    System.out.println(x <= y); // returns 
false because 5 is neither less than or 
equal to 3 
  } 
} 

False 

 
Logical Operators 
You can also test for true or false values with logical operators. 
Logical operators are used to determine the logic between variables or values: 
 

No Operator Name Description Example 

1 && Logical and Returns true if both statements are true x < 5 &&  x < 10 

2 || Logical or Returns true if one of the statements is true x < 5 || x < 4 

3 ! Logical not Reverse the result, returns false if the result is true !(x < 5 && x < 10) 
 

1 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    System.out.println(x > 3 && x < 10); // 
returns true because 5 is greater than 3 
AND 5 is less than 10 
  } 
} 

True 

2 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    System.out.println(x > 3 || x < 4); // 
returns true because one of the 
conditions are true (5 is greater than 3, 
but 5 is not less than 4) 
  } 
} 

True 
    



JAVA PROGRAMMING:  MANUAL 

21 
 

3 public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    System.out.println(!(x > 3 && x < 10)); 
// returns false because ! (not) is used to 
reverse the result 
  } 
} 

False 

  

 
 

9. Java Strings 
 

Strings are used for storing text. 
A String variable contains a collection of characters surrounded by double quotes: 
 

public class Main { 
  public static void main(String[] args) { 
    String greeting = "Hello"; 
    System.out.println(greeting); 
  } 
} 
 

Hello 
 

String Length 
A String in Java is actually an object, which contain methods that can perform certain 
operations on strings. For example, the length of a string can be found with 
the length() method: 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 
    System.out.println("The length of the txt string is: " + txt.length()); 
  } 
} 
 

The length of the txt string is: 26 
 
More String Methods 
There are many string methods available, for example toUpperCase() and toLowerCase(): 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "Hello World"; 
    System.out.println(txt.toUpperCase()); 
    System.out.println(txt.toLowerCase()); 
  } 
} 

 
HELLO WORLD 
hello world 
 



JAVA PROGRAMMING:  MANUAL 

22 
 

Finding a Character in a String 
The indexOf() method returns the index (the position) of the first occurrence of a specified 
text in a string (including whitespace): 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "Please locate where 'locate' occurs!"; 
    System.out.println(txt.indexOf("locate")); 
  } 
} 
 

7 
 

Java counts positions from zero. 
0 is the first position in a string, 1 is the second, 2 is the third ... 
 
String Concatenation 

The + operator can be used between strings to combine them. This is called concatenation: 
 

public class Main { 
  public static void main(String args[]) { 
    String firstName = "John"; 
    String lastName = "Doe"; 
    System.out.println(firstName + " " + lastName); 
  } 
} 
 

John Doe 
 
You can also use the concat() method to concatenate two strings: 
 

public class Main { 
  public static void main(String[] args) { 
    String firstName = "John "; 
    String lastName = "Doe"; 
    System.out.println(firstName.concat(lastName)); 
  } 
} 
 

John Doe 
 
Adding Numbers and Strings 
If you add two numbers, the result will be a number: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 10; 
    int y = 20; 
    int z = x + y; 
    System.out.println(z); 
  } 
} 

30 



JAVA PROGRAMMING:  MANUAL 

23 
 

If you add two strings, the result will be a string concatenation: 
 

public class Main { 
  public static void main(String[] args) { 
    String x = "10"; 
    String y = "20"; 
    String z = x + y; 
    System.out.println(z); 
  } 
} 

 
1020 
 
If you add a number and a string, the result will be a string concatenation: 
 

public class Main { 
  public static void main(String[] args) { 
    String x = "10"; 
    int y = 20; 
    String z = x + y; 
    System.out.println(z); 
  } 
} 

 
1020 
 
Strings - Special Characters 
Because strings must be written within quotes, Java will misunderstand this string, and 
generate an error: 
 

 
 
The solution to avoid this problem, is to use the backslash escape character. 
The backslash (\) escape character turns special characters into string characters: 
 

Escape character Result Description 

\' ' Single quote 

\" " Double quote 

\\ \ Backslash 

 
  



JAVA PROGRAMMING:  MANUAL 

24 
 

The sequence \"  inserts a double quote in a string: 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "We are the so-called \"Vikings\" from the north."; 
    System.out.println(txt); 
  } 
} 

 
We are the so-called "Vikings" from the north. 
 
The sequence \'  inserts a single quote in a string: 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "It\'s alright."; 
    System.out.println(txt); 
  } 
} 

 
It's alright. 
 
The sequence \\  inserts a single backslash in a string: 
 

public class Main { 
  public static void main(String[] args) { 
    String txt = "The character \\ is called backslash."; 
    System.out.println(txt); 
  } 
} 

 
The character \ is called backslash. 
 
Other common escape sequences that are valid in Java are: 
 

No Code Result 

1 \n New Line 

2 \r Carriage Return 

3 \t Tab 

4 \b Backspace 

5 \f Form Feed 

 
 
 
 



JAVA PROGRAMMING:  MANUAL 

25 
 

1 public class Main { 
  public static void main(String[] args) { 
    String txt = "Hello\nWorld!"; 
    System.out.println(txt); 
  } 
} 

Hello 
World! 

2 public class Main { 
  public static void main(String[] args) { 
    String txt = "Hello\rWorld!"; 
    System.out.println(txt); 
  } 
} 

Hello 
World! 

    

3 public class Main { 
  public static void main(String[] args) { 
    String txt = "Hello\tWorld!"; 
    System.out.println(txt); 
  } 
} 

Hello    World! 

4 public class Main { 
  public static void main(String[] args) { 
    String txt = "Hel\blo World!"; 
    System.out.println(txt); 
  } 
} 

Helo World! 
    

 
 
 

10. Java Math 
 
The Java Math class has many methods that allows you to perform mathematical tasks on 
numbers. 
 
Math.max(x,y) 
The Math.max(x,y) method can be used to find the highest value of x and y: 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(Math.max(5, 10));   
  } 
} 

 
10 
 
Math.min(x,y) 
The Math.min(x,y) method can be used to find the lowest value of x and y: 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(Math.min(5, 10));   
  } 
} 

 
5 
 
  



JAVA PROGRAMMING:  MANUAL 

26 
 

Math.sqrt(x) 
The Math.sqrt(x) method returns the square root of x: 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(Math.sqrt(64));   
  } 
} 

 
8.0 
 
 
 

11. Java Booleans 
 
Very often, in programming, you will need a data type that can only have one of two values, 
like: 
 YES / NO 
 ON / OFF 
 TRUE / FALSE 
 
For this, Java has a boolean data type, which can store true or false values. 
 
Boolean Values 
A boolean type is declared with the boolean keyword and can only take the 
values true or false: 
 

public class Main { 
  public static void main(String[] args) { 
    boolean isJavaFun = true; 
    boolean isFishTasty = false;     
    System.out.println(isJavaFun); 
    System.out.println(isFishTasty); 
  } 
} 

 
true 
false 
 
However, it is more common to return boolean values from boolean expressions, for 
conditional testing (see below). 
 
Boolean Expression 
A Boolean expression returns a boolean value: true or false. 
This is useful to build logic, and find answers. 
 
For example, you can use a comparison operator, such as the greater than (>) operator, to 
find out if an expression (or a variable) is true or false: 
 
 
 



JAVA PROGRAMMING:  MANUAL 

27 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 10; 
    int y = 9; 
    System.out.println(x > y); // returns true, because 10 is higher than 9   
  } 
} 

 
True 
 
Or even easier: 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(10 > 9); // returns true, because 10 is higher than 9   
  } 
} 

 
True 
 
In the examples below, we use the equal to (==) operator to evaluate an expression: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 10; 
    System.out.println(x == 10); // returns true, because the value of x is equal to 10 
  } 
} 

 
True 
 

public class Main { 
  public static void main(String[] args) { 
    System.out.println(15 == 10); // returns false, because 10 is not equal to 15 
  } 
} 

 
False 
 
Real Life Example 
Let's think of a "real life example" where we need to find out if a person is old enough to vote. 
 
In the example below, we use the >= comparison operator to find out if the age (25) is greater 
than OR equal to the voting age limit, which is set to 18: 
 
  



JAVA PROGRAMMING:  MANUAL 

28 
 

public class Main { 
  public static void main(String[] args) { 
    int myAge = 25; 
    int votingAge = 18; 
    System.out.println(myAge >= votingAge); // returns true (25 year olds are allowed to 
vote!)  
  } 
} 

 
True 
 
An even better approach (since we are on a roll now), would be to wrap the code above in 
an if...else statement, so we can perform different actions depending on the result: 
 

public class Main { 
  public static void main(String[] args) { 
    int myAge = 25; 
    int votingAge = 18; 
     
    if (myAge >= votingAge) { 
      System.out.println("Old enough to vote!"); 
    } else { 
      System.out.println("Not old enough to vote."); 
    }   
  } 
} 

 
Old enough to vote! 
 
 
 

12. Java If ... Else 
 
Java Conditions and If Statements 
You already know that Java supports the usual logical conditions from mathematics: 
 Less than: a < b 
 Less than or equal to: a <= b 
 Greater than: a > b 
 Greater than or equal to: a >= b 
 Equal to a == b 
 Not Equal to: a != b 
 
You can use these conditions to perform different actions for different decisions. 
Java has the following conditional statements: 
 
 Use if to specify a block of code to be executed, if a specified condition is true 
 Use else to specify a block of code to be executed, if the same condition is false 
 Use else if to specify a new condition to test, if the first condition is false 
 Use switch to specify many alternative blocks of code to be executed 
 
  



JAVA PROGRAMMING:  MANUAL 

29 
 

The if Statement 
Use the if statement to specify a block of Java code to be executed if a condition is true. 
 
Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error. 
 
In the example below, we test two values to find out if 20 is greater than 18. If the condition 
is true, print some text: 
 

public class Main { 
  public static void main(String[] args) { 
    if (20 > 18) { 
      System.out.println("20 is greater than 18"); // obviously 
    }   
  } 
} 

 
20 is greater than 18 
 
We can also test variables: 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 20; 
    int y = 18; 
    if (x > y) { 
      System.out.println("x is greater than y"); 
    }   
  } 
} 

 
x is greater than y 
 
In the example above we use two variables, x and y, to test whether x is greater than y (using 
the > operator). As x is 20, and y is 18, and we know that 20 is greater than 18, we print to the 
screen that "x is greater than y". 
 
The else Statement 
Use the else statement to specify a block of code to be executed if the condition is false. 
 

public class Main { 
  public static void main(String[] args) { 
    int time = 20; 
    if (time < 18) { 
      System.out.println("Good day."); 
    } else { 
      System.out.println("Good evening."); 
    }   
  } 
} 

 
Good evening. 



JAVA PROGRAMMING:  MANUAL 

30 
 

In the example above, time (20) is greater than 18, so the condition is false. Because of this, 
we move on to the else condition and print to the screen "Good evening". If the time was less 
than 18, the program would print "Good day". 
 
The else if Statement 
Use the else if statement to specify a new condition if the first condition is false. 
 

public class Main { 
  public static void main(String[] args) { 
    int time = 22; 
    if (time < 10) { 
      System.out.println("Good morning."); 
    } else if (time < 18) { 
      System.out.println("Good day."); 
    }  else { 
      System.out.println("Good evening."); 
    } 
  } 
} 

 
Good evening. 
 
In the example above, time (22) is greater than 10, so the first condition is false. The next 
condition, in the else if statement, is also false, so we move on to the else condition 
since condition1 and condition2 is both false - and print to the screen "Good evening". 
 
However, if the time was 14, our program would print "Good day." 
 
Short Hand If...Else 
There is also a short-hand if else, which is known as the ternary operator because it consists 
of three operands. 
 
It can be used to replace multiple lines of code with a single line, and is most often used to 
replace simple if else statements: 
 
Instead of writing: 
 

public class Main { 
  public static void main(String[] args) { 
    int time = 20; 
    if (time < 18) { 
      System.out.println("Good day."); 
    } else { 
      System.out.println("Good evening."); 
    }   
  } 
} 

 
You can simply write: 
 
 

https://www.w3schools.com/java/java_conditions.asp


JAVA PROGRAMMING:  MANUAL 

31 
 

public class Main { 
  public static void main(String[] args) {    
    int time = 20; 
    String result; 
    result = (time < 18) ? "Good day." : "Good evening."; 
    System.out.println(result); 
  } 
} 

 
Good evening. 
 
 

13. Java Switch 
 
Java Switch Statements 
Instead of writing many if..else statements, you can use the switch statement. 
The switch statement selects one of many code blocks to be executed: 
 

 
 
This is how it works: 
 The switch expression is evaluated once. 
 The value of the expression is compared with the values of each case. 
 If there is a match, the associated block of code is executed. 
 The break and default keywords are optional, and will be described later in this chapter 
 
The example below uses the weekday number to calculate the weekday name: 
 

public class Main { 
  public static void main(String[] args) { 
    int day = 4; 
    switch (day) { 
      case 1: 
        System.out.println("Monday"); 
        break; 
      case 2: 
        System.out.println("Tuesday"); 
        break; 
      case 3: 
        System.out.println("Wednesday"); 
        break; 



JAVA PROGRAMMING:  MANUAL 

32 
 

      case 4: 
        System.out.println("Thursday"); 
        break; 
      case 5: 
        System.out.println("Friday"); 
        break; 
      case 6: 
        System.out.println("Saturday"); 
        break; 
      case 7: 
        System.out.println("Sunday"); 
        break; 
    } 
  } 
} 

 
Thursday 
 
The break Keyword 
When Java reaches a break keyword, it breaks out of the switch block. 
This will stop the execution of more code and case testing inside the block. 
When a match is found, and the job is done, it's time for a break. There is no need for more 
testing. 
A break can save a lot of execution time because it "ignores" the execution of all the rest of 
the code in the switch block. 
 
The default Keyword 
The default keyword specifies some code to run if there is no case match: 
 

public class Main { 
  public static void main(String[] args) { 
    int day = 4; 
    switch (day) { 
      case 6: 
        System.out.println("Today is Saturday"); 
        break; 
      case 7: 
        System.out.println("Today is Sunday"); 
        break; 
      default: 
        System.out.println("Looking forward to the Weekend"); 
    }     
  } 
} 

 
Looking forward to the Weekend 
 
Note that if the default statement is used as the last statement in a switch block, it does not 
need a break. 
 
  



JAVA PROGRAMMING:  MANUAL 

33 
 

14. Java While Loop 
 
Loops 
Loops can execute a block of code as long as a specified condition is reached. 
Loops are handy because they save time, reduce errors, and they make code more readable. 

 
Java While Loop 
The while loop loops through a block of code as long as a specified condition is true: 
 

public class Main { 
  public static void main(String[] args) { 
    int i = 0; 
    while (i < 5) { 
      System.out.println(i); 
      i++; 
    }   
  } 
} 

 

 
 
The Do/While Loop 
The do/while loop is a variant of the while loop. This loop will execute the code block once, 
before checking if the condition is true, then it will repeat the loop as long as the condition is 
true. 
 
The example below uses a do/while loop. The loop will always be executed at least once, even 
if the condition is false, because the code block is executed before the condition is tested: 
 

public class Main { 
  public static void main(String[] args) { 
    int i = 0; 
    do { 
      System.out.println(i); 
      i++; 
    } 
    while (i < 5);   
  } 
} 

 

 
 



JAVA PROGRAMMING:  MANUAL 

34 
 

15. Java For Loop 
 
When you know exactly how many times you want to loop through a block of code, use 
the for loop instead of a while loop: 
 
The example below will print the numbers 0 to 4: 
 

public class Main { 
  public static void main(String[] args) { 
    for (int i = 0; i < 5; i++) { 
      System.out.println(i); 
    }   
  } 
} 

 

 
 
Example explained 

 Statement 1 sets a variable before the loop starts (int i = 0). 

 Statement 2 defines the condition for the loop to run (i must be less than 5). If the 
condition is true, the loop will start over again, if it is false, the loop will end. 

 Statement 3 increases a value (i++) each time the code block in the loop has been 
executed. 

 
This example will only print even values between 0 and 10: 
 

public class Main { 
  public static void main(String[] args) { 
    for (int i = 0; i <= 10; i = i + 2) { 
      System.out.println(i); 
    }   
  } 
} 

 

 
 
Nested Loops 
It is also possible to place a loop inside another loop. This is called a nested loop. 
The "inner loop" will be executed one time for each iteration of the "outer loop": 
 



JAVA PROGRAMMING:  MANUAL 

35 
 

 
 
 

 
 
For-Each Loop 
There is also a "for-each" loop, which is used exclusively to loop through elements in an array: 
 
The following example outputs all elements in the cars array, using a "for-each" loop: 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    for (String i : cars) { 
      System.out.println(i); 
    }     
  } 
} 

 

 
 
 
  

https://www.w3schools.com/java/java_arrays.asp


JAVA PROGRAMMING:  MANUAL 

36 
 

16. Java Break and Continue 
 
Java Break 
You have already seen the break statement used in an earlier chapter of this tutorial. It was 
used to "jump out" of a switch statement. 
The break statement can also be used to jump out of a loop. 
This example stops the loop when i is equal to 4: 
 

public class Main { 
  public static void main(String[] args) { 
    for (int i = 0; i < 10; i++) { 
      if (i == 4) { 
        break; 
      } 
      System.out.println(i); 
    }   
  } 
} 

 

 
 
Java Continue 
The continue statement breaks one iteration (in the loop), if a specified condition occurs, and 
continues with the next iteration in the loop. 
This example skips the value of 4: 
 

public class Main { 
  public static void main(String[] args) { 
    for (int i = 0; i < 10; i++) { 
      if (i == 4) { 
        continue; 
      } 
      System.out.println(i); 
    }   
  } 
} 

 

 
 



JAVA PROGRAMMING:  MANUAL 

37 
 

Break and Continue in While Loop 
You can also use break and continue in while loops: 
 

public class Main { 
  public static void main(String[] args) { 
    int i = 0; 
    while (i < 10) { 
      System.out.println(i); 
      i++; 
      if (i == 4) { 
        break; 
      } 
    }   
  } 
} 

 

 
 

public class Main { 
  public static void main(String[] args) { 
    int i = 0; 
    while (i < 10) { 
      if (i == 4) { 
        i++; 
        continue; 
      } 
      System.out.println(i); 
      i++; 
    }   
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

38 
 

17. Java Arrays 
 
Arrays are used to store multiple values in a single variable, instead of declaring separate 
variables for each value. 
 
To declare an array, define the variable type with square brackets: 

 
 
We have now declared a variable that holds an array of strings. To insert values to it, you can 
place the values in a comma-separated list, inside curly braces: 

 
 
To create an array of integers, you could write: 

 
 
Access the Elements of an Array 
You can access an array element by referring to the index number. 
This statement accesses the value of the first element in cars: 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    System.out.println(cars[0]); 
  } 
} 

 
Volvo 
 
Change an Array Element 
To change the value of a specific element, refer to the index number: 

 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    cars[0] = "Opel"; 
    System.out.println(cars[0]); 
  } 
} 

 
Opel 
 
  



JAVA PROGRAMMING:  MANUAL 

39 
 

Array Length 
To find out how many elements an array has, use the length property: 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    System.out.println(cars.length); 
  } 
} 

 
4 
 
Loop Through an Array 
You can loop through the array elements with the for loop, and use the length property to 
specify how many times the loop should run. 
The following example outputs all elements in the cars array: 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    for (int i = 0; i < cars.length; i++) { 
      System.out.println(cars[i]); 
    } 
  } 
} 

 

 
 
Loop Through an Array with For-Each 
There is also a "for-each" loop, which is used exclusively to loop through elements in arrays. 
The following example outputs all elements in the cars array, using a "for-each" loop: 
 

public class Main { 
  public static void main(String[] args) { 
    String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
    for (String i : cars) { 
      System.out.println(i); 
    }     
  } 
} 

 

 
 



JAVA PROGRAMMING:  MANUAL 

40 
 

The example above can be read like this: for each String element (called i - as in index) in cars, 
print out the value of i. 
 
If you compare the for loop and for-each loop, you will see that the for-each method is easier 
to write, it does not require a counter (using the length property), and it is more readable. 
 
Multidimensional Arrays 
A multidimensional array is an array of arrays. 
Multidimensional arrays are useful when you want to store data as a tabular form, like a table 
with rows and columns. 
 
To create a two-dimensional array, add each array within its own set of curly braces: 

 
myNumbers is now an array with two arrays as its elements. 
 
Access Elements 
To access the elements of the myNumbers array, specify two indexes: one for the array, and 
one for the element inside that array. This example accesses the third element (2) in the 
second array (1) of myNumbers: 
 

public class Main { 
  public static void main(String[] args) { 
    int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} }; 
    System.out.println(myNumbers[1][2]);   
  } 
} 

 
7 
 
Change Element Values 
You can also change the value of an element: 
 

public class Main { 
  public static void main(String[] args) { 
    int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} }; 
    myNumbers[1][2] = 9; 
    System.out.println(myNumbers[1][2]); // Outputs 9 instead of 7 
  } 
} 

 
9 
 
Loop Through a Multi-Dimensional Array 
We can also use a for loop inside another for loop to get the elements of a two-dimensional 
array (we still have to point to the two indexes): 
 
 
 
 
 



JAVA PROGRAMMING:  MANUAL 

41 
 

public class Main { 
   public static void main(String[] args) { 
     int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} }; 
     for (int i = 0; i < myNumbers.length; ++i) { 
        for(int j = 0; j < myNumbers[i].length; ++j) { 
           System.out.println(myNumbers[i][j]); 
        } 
     } 
   } 
} 

 

 
 
 

 

  



JAVA PROGRAMMING:  MANUAL 

42 
 

18. Java Methods 
 
A method is a block of code which only runs when it is called. 
You can pass data, known as parameters, into a method. 
 
Methods are used to perform certain actions, and they are also known as functions. 
Why use methods? To reuse code: define the code once, and use it many times. 
 
Create a Method 
A method must be declared within a class. It is defined with the name of the method, followed 
by parentheses (). Java provides some pre-defined methods, such as System.out.println(), but 
you can also create your own methods to perform certain actions: 
 
Create a method inside Main: 
 

 
 myMethod() is the name of the method 

 static means that the method belongs to the Main class and not an object of the Main 
class. You will learn more about objects and how to access methods through objects later 
in this tutorial. 

 void means that this method does not have a return value. 

 
Call a Method 
To call a method in Java, write the method's name followed by two parentheses () and a 
semicolon; 
 
In the following example, myMethod() is used to print a text (the action), when it is called.  
Inside main, call the myMethod() method: 
 

public class Main { 
  static void myMethod() { 
    System.out.println("I just got executed!"); 
  } 
 
  public static void main(String[] args) { 
    myMethod(); 
  } 
} 

 
I just got executed! 
 
  



JAVA PROGRAMMING:  MANUAL 

43 
 

A method can also be called multiple times: 
 

public class Main { 
  static void myMethod() { 
    System.out.println("I just got executed!"); 
  } 
 
  public static void main(String[] args) { 
    myMethod(); 
    myMethod(); 
    myMethod(); 
  } 
} 

 

 
 
 
 

19. Java Method Parameters 
 
Parameters and Arguments 
Information can be passed to methods as parameter. Parameters act as variables inside the 
method. 
 
Parameters are specified after the method name, inside the parentheses. You can add as many 
parameters as you want, just separate them with a comma. 
 
The following example has a method that takes a String called fname as parameter. When the 
method is called, we pass along a first name, which is used inside the method to print the full 
name: 
 

public class Main { 
  static void myMethod(String fname) { 
    System.out.println(fname + " Refsnes"); 
  } 
 
  public static void main(String[] args) { 
    myMethod("Liam"); 
    myMethod("Jenny"); 
    myMethod("Anja"); 
  } 
} 

 

 
  



JAVA PROGRAMMING:  MANUAL 

44 
 

When a parameter is passed to the method, it is called an argument. So, from the example 
above: fname is a parameter, while Liam, Jenny and Anja are arguments. 
 
Multiple Parameters 
You can have as many parameters as you like: 
 

public class Main { 
  static void myMethod(String fname, int age) { 
    System.out.println(fname + " is " + age); 
  } 
  public static void main(String[] args) { 
    myMethod("Liam", 5); 
    myMethod("Jenny", 8); 
    myMethod("Anja", 31); 
  } 
} 
 

 
 
Note that when you are working with multiple parameters, the method call must have the 
same number of arguments as there are parameters, and the arguments must be passed in 
the same order. 
 
Return Values 
The void keyword, used in the examples above, indicates that the method should not return 
a value. If you want the method to return a value, you can use a primitive data type (such 
as int, char, etc.) instead of void, and use the return keyword inside the method: 
 

public class Main { 
  static int myMethod(int x) { 
    return 5 + x; 
  } 
  public static void main(String[] args) { 
    System.out.println(myMethod(3)); 
  } 
} 
 

8 
 
This example returns the sum of a method's two parameters: 
 

public class Main { 
  static int myMethod(int x, int y) { 
    return x + y; 
  } 
  public static void main(String[] args) { 
    System.out.println(myMethod(5, 3)); 
  } 
} 

8 



JAVA PROGRAMMING:  MANUAL 

45 
 

You can also store the result in a variable (recommended, as it is easier to read and maintain): 
 

public class Main { 
  static int myMethod(int x, int y) { 
    return x + y; 
  } 
 
  public static void main(String[] args) { 
    int z = myMethod(5, 3); 
    System.out.println(z); 
  } 
} 

 
8 
 
A Method with If...Else 
It is common to use if...else statements inside methods: 
 

public class Main { 
 
  // Create a checkAge() method with an integer parameter called age 
  static void checkAge(int age) { 
 
    // If age is less than 18, print "access denied" 
    if (age < 18) { 
      System.out.println("Access denied - You are not old enough!");  
       
    // If age is greater than, or equal to, 18, print "access granted" 
    } else { 
      System.out.println("Access granted - You are old enough!");  
    } 
     
  }  
 
  public static void main(String[] args) {  
    checkAge(20); // Call the checkAge method and pass along an age of 20 
  }  
} 

 
Access granted - You are old enough! 
 
 

20. Java Method Overloading 
 
Method Overloading 
With method overloading, multiple methods can have the same name with different 
parameters: 
 
 
 
 



JAVA PROGRAMMING:  MANUAL 

46 
 

Example: 

 
 
Consider the following example, which has two methods that add numbers of different type: 
 

public class Main { 
  static int plusMethodInt(int x, int y) { 
    return x + y; 
  } 
   
  static double plusMethodDouble(double x, double y) { 
    return x + y; 
  } 
   
  public static void main(String[] args) { 
    int myNum1 = plusMethodInt(8, 5); 
    double myNum2 = plusMethodDouble(4.3, 6.26); 
    System.out.println("int: " + myNum1); 
    System.out.println("double: " + myNum2); 
  } 
} 

 

 
 
Instead of defining two methods that should do the same thing, it is better to overload one. 
In the example below, we overload the plusMethod method to work for both int and double: 
 

public class Main { 
  static int plusMethod(int x, int y) { 
    return x + y; 
  } 
   
  static double plusMethod(double x, double y) { 
    return x + y; 
  } 
   
  public static void main(String[] args) { 
    int myNum1 = plusMethod(8, 5); 
    double myNum2 = plusMethod(4.3, 6.26); 
    System.out.println("int: " + myNum1); 
    System.out.println("double: " + myNum2); 
  } 
} 

 

 
 



JAVA PROGRAMMING:  MANUAL 

47 
 

21. Java Scope 
 
In Java, variables are only accessible inside the region they are created. This is called scope. 

 
Method Scope 
Variables declared directly inside a method are available anywhere in the method following 
the line of code in which they were declared: 
 

public class Main { 
  public static void main(String[] args) { 
 
    // Code here cannot use x 
 
    int x = 100; 
 
    // Code here can use x 
    System.out.println(x); 
  } 
} 

 
100 
 
Block Scope 
A block of code refers to all of the code between curly braces {}. 
Variables declared inside blocks of code are only accessible by the code between the curly 
braces, which follows the line in which the variable was declared: 
 

public class Main { 
  public static void main(String[] args) { 
    // Code here CANNOT use x 
    { // This is a block 
      // Code here CANNOT use x 
 
      int x = 100; 
 
      // Code here CAN use x 
      System.out.println(x); 
 
    } // The block ends here 
 
  // Code here CANNOT use x 
   
  } 
} 

 
100 
 
A block of code may exist on its own or it can belong to an if, while or for statement. In the 
case of for statements, variables declared in the statement itself are also available inside the 
block's scope. 
 



JAVA PROGRAMMING:  MANUAL 

48 
 

22. Java Recursion 
 
Recursion is the technique of making a function call itself. This technique provides a way to 
break complicated problems down into simple problems which are easier to solve. 
 
Recursion may be a bit difficult to understand. The best way to figure out how it works is to 
experiment with it. 
 
Recursion Example 
Adding two numbers together is easy to do, but adding a range of numbers is more 
complicated. In the following example, recursion is used to add a range of numbers together 
by breaking it down into the simple task of adding two numbers: 
 
Use recursion to add all of the numbers up to 10. 
 

public class Main { 
  public static void main(String[] args) { 
    int result = sum(10); 
    System.out.println(result); 
  } 
  public static int sum(int k) { 
    if (k > 0) { 
      return k + sum(k - 1); 
    } else { 
      return 0; 
    } 
  } 
} 

 
55 
 
Example Explained 
When the sum() function is called, it adds parameter k to the sum of all numbers smaller 
than k and returns the result. When k becomes 0, the function just returns 0. When running, 
the program follows these steps: 
 

 
 

Since the function does not call itself when k is 0, the program stops there and returns the 
result. 
 
  



JAVA PROGRAMMING:  MANUAL 

49 
 

Halting Condition 
Just as loops can run into the problem of infinite looping, recursive functions can run into the 
problem of infinite recursion. Infinite recursion is when the function never stops calling itself. 
Every recursive function should have a halting condition, which is the condition where the 
function stops calling itself. In the previous example, the halting condition is when the 
parameter k becomes 0. 
 
It is helpful to see a variety of different examples to better understand the concept. In this 
example, the function adds a range of numbers between a start and an end. The halting 
condition for this recursive function is when end is not greater than start: 
 
Use recursion to add all of the numbers between 5 to 10. 
 

public class Main { 
  public static void main(String[] args) { 
    int result = sum(5, 10); 
    System.out.println(result); 
  } 
  public static int sum(int start, int end) { 
    if (end > start) { 
      return end + sum(start, end - 1); 
    } else { 
      return end; 
    } 
  } 
} 

 
45 
 
The developer should be very careful with recursion as it can be quite easy to slip into writing 
a function which never terminates, or one that uses excess amounts of memory or processor 
power. However, when written correctly recursion can be a very efficient and mathematically-
elegant approach to programming. 
 
  



JAVA PROGRAMMING:  MANUAL 

50 
 

23. Java OOP 
 
Java - What is OOP? 
OOP stands for Object-Oriented Programming. 
Procedural programming is about writing procedures or methods that perform operations on 
the data, while object-oriented programming is about creating objects that contain both data 
and methods. 
 
Object-oriented programming has several advantages over procedural programming: 
 OOP is faster and easier to execute 

 OOP provides a clear structure for the programs 

 OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the code easier 
to maintain, modify and debug 

 OOP makes it possible to create full reusable applications with less code and shorter 
development time 

 
Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the repetition of code. You 
should extract out the codes that are common for the application, and place them at a single 
place and reuse them instead of repeating it. 
 
Java - What are Classes and Objects? 
Classes and objects are the two main aspects of object-oriented programming. 
Look at the following illustration to see the difference between class and objects: 
 

 
 
Another example: 
 

 
 
So, a class is a template for objects, and an object is an instance of a class. 
 
When the individual objects are created, they inherit all the variables and methods from the 
class. 
 
  



JAVA PROGRAMMING:  MANUAL 

51 
 

24. Java Classes/Objects 
 
Java is an object-oriented programming language. 
 
Everything in Java is associated with classes and objects, along with its attributes and 
methods. For example: in real life, a car is an object. The car has attributes, such as weight 
and color, and methods, such as drive and brake. 
 
A Class is like an object constructor, or a "blueprint" for creating objects. 
 
Create a Class 
To create a class, use the keyword class: 
Main.java 
Get your own Java Server 
Create a class named "Main" with a variable x: 
 

 
 
Remember that a class should always start with an uppercase first letter, and that the name 
of the java file should match the class name. 
 
Create an Object 
In Java, an object is created from a class. We have already created the class named Main, so 
now we can use this to create objects. 
 
To create an object of Main, specify the class name, followed by the object name, and use 
the keyword new: 
 

public class Main { 
  int x = 5; 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println(myObj.x); 
  } 
} 

 
5 
 
Multiple Objects 
You can create multiple objects of one class. 
Create two objects of Main: 
 
  



JAVA PROGRAMMING:  MANUAL 

52 
 

public class Main { 
  int x = 5; 
 
  public static void main(String[] args) { 
    Main myObj1 = new Main(); 
    Main myObj2 = new Main(); 
    System.out.println(myObj1.x); 
    System.out.println(myObj2.x); 
  } 
} 

 

 
 
Using Multiple Classes 
You can also create an object of a class and access it in another class. This is often used for 
better organization of classes (one class has all the attributes and methods, while the other 
class holds the main() method (code to be executed)). 
 
Remember that the name of the java file should match the class name. In this example, we 
have created two files in the same directory/folder: 

 Main.java 

 Second.java 
 

Main.java 

public class Main { 
  int x = 5; 
} 

 

Second.java 

class Second { 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println(myObj.x); 
  } 
} 

 
5 

 

 

  



JAVA PROGRAMMING:  MANUAL 

53 
 

25. Java Class Attributes 
 
In the previous chapter, we used the term "variable" for x in the example (as shown below). 
It is actually an attribute of the class. Or you could say that class attributes are variables 
within a class: 
 
Create a class called "Main" with two attributes: x and y: 

 
Accessing Attributes 
You can access attributes by creating an object of the class, and by using the dot syntax (.): 
The following example will create an object of the Main class, with the name myObj. We use 
the x attribute on the object to print its value: 
 
Create an object called "myObj" and print the value of x: 
 

public class Main { 
  int x = 5; 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println(myObj.x); 
  } 
} 

 
5 
 
Modify Attributes 
You can also modify attribute values. 
Set the value of x to 40: 
 

public class Main { 
  int x; 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    myObj.x = 40; 
    System.out.println(myObj.x); 
  } 
} 

 
40 
 
Or override existing values: 
Change the value of x to 25: 
 
 
 



JAVA PROGRAMMING:  MANUAL 

54 
 

public class Main { 
  int x = 10; 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    myObj.x = 25; // x is now 25 
    System.out.println(myObj.x); 
  } 
} 

 
25 
 
If you don't want the ability to override existing values, declare the attribute as final: 
 

public class Main { 
  final int x = 10; 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    myObj.x = 25; // will generate an error 
    System.out.println(myObj.x);  
  } 
} 

 

 
 
The final keyword is useful when you want a variable to always store the same value, like PI 
(3.14159...). 
 
The final keyword is called a "modifier".  
 
Multiple Objects 
If you create multiple objects of one class, you can change the attribute values in one object, 
without affecting the attribute values in the other. 
 
Change the value of x to 25 in myObj2, and leave x in myObj1 unchanged: 
 

public class Main { 
  int x = 5; 
 
  public static void main(String[] args) { 
    Main myObj1 = new Main(); 
    Main myObj2 = new Main(); 
    myObj2.x = 25; 
    System.out.println(myObj1.x); 
    System.out.println(myObj2.x); 
  } 
} 

 



JAVA PROGRAMMING:  MANUAL 

55 
 

 
 
Multiple Attributes 
You can specify as many attributes as you want: 
 

public class Main { 
  String fname = "John"; 
  String lname = "Doe"; 
  int age = 24; 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println("Name: " + myObj.fname + " " + myObj.lname); 
    System.out.println("Age: " + myObj.age); 
  } 
} 

 

 
 
 

26. Java Class Methods 
 
You learned that methods are declared within a class, and that they are used to perform 
certain actions: 
 
Create a method named myMethod() in Main: 

 

myMethod() prints a text (the action), when it is called. To call a method, write the method's 
name followed by two parentheses () and a semicolon; 
 
Inside main, call myMethod(): 
 

public class Main { 
  static void myMethod() { 
    System.out.println("Hello World!"); 
  } 
 
  public static void main(String[] args) { 
    myMethod(); 
  } 
} 

 
Hello World! 



JAVA PROGRAMMING:  MANUAL 

56 
 

Static vs. Public 
You will often see Java programs that have either static or public attributes and methods. 
In the example above, we created a static method, which means that it can be accessed 
without creating an object of the class, unlike public, which can only be accessed by objects. 
 
An example to demonstrate the differences between static and public methods: 
 

public class Main { 
  // Static method 
  static void myStaticMethod() { 
    System.out.println("Static methods can be called without creating objects"); 
  } 
 
  // Public method 
  public void myPublicMethod() { 
    System.out.println("Public methods must be called by creating objects"); 
  } 
 
  // Main method 
  public static void main(String[] args) { 
    myStaticMethod(); // Call the static method 
 
    Main myObj = new Main(); // Create an object of MyClass 
    myObj.myPublicMethod(); // Call the public method 
  } 
} 

 

 
 
Access Methods With an Object 
Create a Car object named myCar. Call the fullThrottle() and speed() methods on 
the myCar object, and run the program: 
 

// Create a Main class 
public class Main { 
  
  // Create a fullThrottle() method 
  public void fullThrottle() { 
    System.out.println("The car is going as fast as it can!"); 
  } 
 
  // Create a speed() method and add a parameter 
  public void speed(int maxSpeed) { 
    System.out.println("Max speed is: " + maxSpeed); 
  } 
 
  // Inside main, call the methods on the myCar object 
  public static void main(String[] args) { 
    Main myCar = new Main();     // Create a myCar object 
    myCar.fullThrottle();      // Call the fullThrottle() method 



JAVA PROGRAMMING:  MANUAL 

57 
 

    myCar.speed(200);          // Call the speed() method 
  } 
} 

 

 
 
Explained: 
 
1. We created a custom Main class with the class keyword. 

2. We created the fullThrottle() and speed() methods in the Main class. 

3. The fullThrottle() method and the speed() method will print out some text, when they are 
called. 

4. The speed() method accepts an int parameter called maxSpeed - we will use this in 8). 

5. In order to use the Main class and its methods, we need to create an object of 
the Main Class. 

6. Then, go to the main() method, which you know by now is a built-in Java method that runs 
your program (any code inside main is executed). 

7. By using the new keyword we created an object with the name myCar. 

8. Then, we call the fullThrottle() and speed() methods on the myCar object, and run the 
program using the name of the object (myCar), followed by a dot (.), followed by the name 
of the method (fullThrottle(); and speed(200);). Notice that we add an int parameter 
of 200 inside the speed() method. 

 
Using Multiple Classes 
Like we specified in the Classes chapter, it is a good practice to create an object of a class 
and access it in another class. 
 
Remember that the name of the java file should match the class name. In this example, we 
have created two files in the same directory: 
 Main.java 
 Second.java 
 

Main.java 

public class Main { 
  public void fullThrottle() { 
    System.out.println("The car is going as fast as it can!"); 
  } 
 
  public void speed(int maxSpeed) { 
    System.out.println("Max speed is: " + maxSpeed); 
  } 
} 

 

https://www.w3schools.com/java/java_classes.asp


JAVA PROGRAMMING:  MANUAL 

58 
 

Second.java 

class Second { 
  public static void main(String[] args) { 
    Main myCar = new Main();     // Create a myCar object 
    myCar.fullThrottle();      // Call the fullThrottle() method 
    myCar.speed(200);          // Call the speed() method 
  } 
} 

 

 
 
 

27. Java Constructors 
 
A constructor in Java is a special method that is used to initialize objects. The constructor is 
called when an object of a class is created. It can be used to set initial values for object 
attributes. 
 
Create a constructor: 
 

// Create a Main class 
public class Main { 
  int x; 
 
  // Create a class constructor for the Main class 
  public Main() { 
    x = 5; 
  } 
 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println(myObj.x); 
  } 
} 

 
5 
 
Note that the constructor name must match the class name, and it cannot have a return 
type (like void). 
Also note that the constructor is called when the object is created. 
All classes have constructors by default: if you do not create a class constructor yourself, Java 
creates one for you. However, then you are not able to set initial values for object attributes. 
 
Constructor Parameters 
Constructors can also take parameters, which is used to initialize attributes. 
The following example adds an int y parameter to the constructor. Inside the constructor we 
set x to y (x=y). When we call the constructor, we pass a parameter to the constructor (5), 
which will set the value of x to 5: 
 



JAVA PROGRAMMING:  MANUAL 

59 
 

public class Main { 
  int x; 
 
  public Main(int y) { 
    x = y; 
  } 
 
  public static void main(String[] args) { 
    Main myObj = new Main(5); 
    System.out.println(myObj.x); 
  } 
} 

 
5 
 
You can have as many parameters as you want: 
 

//filename: Main.java 
public class Main { 
  int modelYear; 
  String modelName; 
 
  public Main(int year, String name) { 
    modelYear = year; 
    modelName = name; 
  } 
 
  public static void main(String[] args) { 
    Main myCar = new Main(1969, "Mustang"); 
    System.out.println(myCar.modelYear + " " + myCar.modelName); 
  } 
} 

 
1969 Mustang 
 
 
 

28. Java Modifiers 
 
Modifiers 
By now, you are quite familiar with the public keyword that appears in almost all of our 
examples: 

 
The public keyword is an access modifier, meaning that it is used to set the access level for 
classes, attributes, methods and constructors. 
We divide modifiers into two groups: 

 Access Modifiers - controls the access level 
 Non-Access Modifiers - do not control access level, but provides other functionality 



JAVA PROGRAMMING:  MANUAL 

60 
 

Access Modifiers 
For classes, you can use either public or default: 
 

No Modifier Description  

1 public The class is accessible by any other class 

2 default 
The class is only accessible by classes in the same package. 
This is used when you don't specify a modifier.  

 

1 public class Main { 
  public static void main(String[] args) { 
    System.out.println("Hello World"); 
  } 
} 

Hello World 

2 class MyClass { 
  public static void main(String[] args) { 
    System.out.println("Hello World"); 
  } 
} 

Hello World 
 
 
For attributes, methods and constructors, you can use the one of the following: 
 

No Modifier Description 

1 public The code is accessible for all classes 

2 private The code is only accessible within the declared class 

3 default 
The code is only accessible in the same package. This is used when 
you don't specify a modifier.  

4 protected The code is accessible in the same package and subclasses.  

 

1 public class Main { 
  public String fname = "John"; 
  public String lname = "Doe"; 
  public String email = "john@doe.com"; 
  public int age = 24; 
} 

 

2 public class Main { 
  private String fname = "John"; 
  private String lname = "Doe"; 
  private String email = "john@doe.com"; 
  private int age = 24; 
   
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    System.out.println("Name: " + 
myObj.fname + " " + myObj.lname); 
    System.out.println("Email: " + 
myObj.email); 
    System.out.println("Age: " + myObj.age); 
  } 
} 

 
 

    



JAVA PROGRAMMING:  MANUAL 

61 
 

3 class Person { 
  String fname = "John"; 
  String lname = "Doe"; 
  String email = "john@doe.com"; 
  int age = 24; 
   
  public static void main(String[] args) { 
    Person myObj = new Person(); 
    System.out.println("Name: " + 
myObj.fname + " " + myObj.lname); 
    System.out.println("Email: " + 
myObj.email); 
    System.out.println("Age: " + myObj.age); 
  } 
} 

 

4 class Person { 
  protected String fname = "John"; 
  protected String lname = "Doe"; 
  protected String email = 
"john@doe.com"; 
  protected int age = 24; 
} 
 
class Student extends Person { 
  private int graduationYear = 2018; 
  public static void main(String[] args) { 
    Student myObj = new Student(); 
    System.out.println("Name: " + 
myObj.fname + " " + myObj.lname); 
    System.out.println("Email: " + 
myObj.email); 
    System.out.println("Age: " + myObj.age); 
    System.out.println("Graduation Year: " + 
myObj.graduationYear); 
  } 
} 

 
 
Non-Access Modifiers 
For classes, you can use either final or abstract: 
 

No Modifier Description 

1 final The class cannot be inherited by other classes 

2 abstract 
The class cannot be used to create objects (To access an abstract 
class, it must be inherited from another class.  

 

1 final class Vehicle { 
  protected String brand = "Ford"; 
  public void honk() { 
    System.out.println("Tuut, tuut!"); 
  } 
} 
 
class Main extends Vehicle { 
  private String modelName = "Mustang"; 
  public static void main(String[] args) { 
    Main myFastCar = new Main(); 
    myFastCar.honk(); 
    System.out.println(myFastCar.brand + " 
" + myFastCar.modelName); 

2 // abstract class 
abstract class Main { 
  public String fname = "John"; 
  public String lname = "Doe"; 
  public String email = "john@doe.com"; 
  public int age = 24; 
  public abstract void study(); // abstract 
method  
} 
 
// Subclass (inherit from Person) 
class Student extends Main { 
  public int graduationYear = 2018; 
  public void study() { 



JAVA PROGRAMMING:  MANUAL 

62 
 

  } 
} 

 

    System.out.println("Studying all day 
long"); 
  } 
} 

 
 
For attributes and methods, you can use the one of the following: 
 

No Modifier Description 

1 final Attributes and methods cannot be overridden/modified 

2 
static Attributes and methods belongs to the class, rather than an 

object 

3 
abstract Can only be used in an abstract class, and can only be used on 

methods. The method does not have a body, for example abstract 
void run();. The body is provided by the subclass (inherited from).  

4 
transient Attributes and methods are skipped when serializing the object 

containing them 

5 synchronized Methods can only be accessed by one thread at a time 

6 
volatile The value of an attribute is not cached thread-locally, and is 

always read from the "main memory" 

 
Final 
If you don't want the ability to override existing attribute values, declare attributes as final: 
 

public class Main { 
  final int x = 10; 
  final double PI = 3.14; 
  public static void main(String[] args) { 
    Main myObj = new Main(); 
    myObj.x = 50; // will generate an error 
    myObj.PI = 25; // will generate an error 
    System.out.println(myObj.x);  
  } 
} 

 

 
  



JAVA PROGRAMMING:  MANUAL 

63 
 

Static 
A static method means that it can be accessed without creating an object of the class, 
unlike public: 
An example to demonstrate the differences between static and public methods: 
 

public class Main { 
  // Static method 
  static void myStaticMethod() { 
    System.out.println("Static methods can be called without creating objects"); 
  } 
 
  // Public method 
  public void myPublicMethod() { 
    System.out.println("Public methods must be called by creating objects"); 
  } 
 
  // Main method 
  public static void main(String[] args) { 
    myStaticMethod(); // Call the static method 
 
    Main myObj = new Main(); // Create an object of MyClass 
    myObj.myPublicMethod(); // Call the public method 
  } 
} 

 

 
 
Abstract 
An abstract method belongs to an abstract class, and it does not have a body. The body is 
provided by the subclass: 
 

// abstract class 
abstract class Main { 
  public String fname = "John"; 
  public int age = 24; 
  public abstract void study(); // abstract method  
} 
// Subclass (inherit from Main) 
class Student extends Main { 
  public int graduationYear = 2018; 
  public void study() { // the body of the abstract method is provided here 
    System.out.println("Studying all day long"); 
  } 
} 

 

 



JAVA PROGRAMMING:  MANUAL 

64 
 

29. Java Encapsulation 
 
Encapsulation 
The meaning of Encapsulation, is to make sure that "sensitive" data is hidden from users. To 
achieve this, you must: 
 declare class variables/attributes as private 
 provide public get and set methods to access and update the value of a private variable 

 
Get and Set 
You learned from the previous chapter that private variables can only be accessed within the 
same class (an outside class has no access to it). However, it is possible to access them if we 
provide public get and set methods. 
 
The get method returns the variable value, and the set method sets the value. 
Syntax for both is that they start with either get or set, followed by the name of the variable, 
with the first letter in upper case: 
 

 
Explained 
The get method returns the value of the variable name. 
The set method takes a parameter (newName) and assigns it to the name variable. 
The  keyword is used to refer to the current object. 
However, as the name variable is declared as private, we cannot access it from outside this 
class: 
 

public class Main { 
  public static void main(String[] args) { 
    Person myObj = new Person(); 
    myObj.name = "John"; 
    System.out.println(myObj.name); 
  } 
} 
 

If the variable was declared as public, we would expect the following output: 
 
John 
 
  



JAVA PROGRAMMING:  MANUAL 

65 
 

However, as we try to access a private variable, we get an error: 
 

 
 
Instead, we use the getName() and setName() methods to access and update the variable: 
 

public class Main { 
  public static void main(String[] args) { 
    Person myObj = new Person(); 
    myObj.setName("John"); 
    System.out.println(myObj.getName()); 
  } 
} 

 
John 
 
Why Encapsulation? 

 Better control of class attributes and methods 

 Class attributes can be made read-only (if you only use the get method), or write-only (if 
you only use the set method) 

 Flexible: the programmer can change one part of the code without affecting other parts 

 Increased security of data 
  
 

30. Java Packages 
 
Java Packages & API 
A package in Java is used to group related classes. Think of it as a folder in a file directory. We 
use packages to avoid name conflicts, and to write a better maintainable code. Packages are 
divided into two categories: 

 Built-in Packages (packages from the Java API) 

 User-defined Packages (create your own packages) 
 
Built-in Packages 
The Java API is a library of prewritten classes, that are free to use, included in the Java 
Development Environment. 
The library contains components for managing input, database programming, and much much 
more.  
The complete list can be found at Oracles 
website: https://docs.oracle.com/javase/8/docs/api/. 
 
The library is divided into packages and classes. Meaning you can either import a single class 
(along with its methods and attributes), or a whole package that contain all the classes that 
belong to the specified package. 

https://docs.oracle.com/javase/8/docs/api/


JAVA PROGRAMMING:  MANUAL 

66 
 

To use a class or a package from the library, you need to use the import keyword: 

 
 
Import a Class 
If you find a class you want to use, for example, the Scanner class, which is used to get user 
input, write the following code: 

 
 
In the example above, java.util is a package, while Scanner is a class of the java.util package. 
 
To use the Scanner class, create an object of the class and use any of the available methods 
found in the Scanner class documentation. In our example, we will use 
the nextLine() method, which is used to read a complete line: 
 
Using the Scanner class to get user input: 
 

import java.util.Scanner; // import the Scanner class  
 
class Main { 
  public static void main(String[] args) { 
    Scanner myObj = new Scanner(System.in); 
    String userName; 
     
    // Enter username and press Enter 
    System.out.println("Enter username");  
    userName = myObj.nextLine();    
        
    System.out.println("Username is: " + userName);         
  } 
} 

 
Enter username 
 
Import a Package 
There are many packages to choose from. In the previous example, we used 
the Scanner class from the java.util package. This package also contains date and time 
facilities, random-number generator and other utility classes. 
 
To import a whole package, end the sentence with an asterisk sign (*). The following 
example will import ALL the classes in the java.util package: 

 
 

import java.util.*; // import the java.util package  
 
class Main { 
  public static void main(String[] args) { 
    Scanner myObj = new Scanner(System.in); 
    String userName; 
     



JAVA PROGRAMMING:  MANUAL 

67 
 

    // Enter username and press Enter 
    System.out.println("Enter username");  
    userName = myObj.nextLine();    
        
    System.out.println("Username is: " + userName);         
  } 
} 

 
User-defined Packages 
To create your own package, you need to understand that Java uses a file system directory 
to store them. Just like folders on your computer: 
 

 
 
To create a package, use the package keyword: 
 

package mypack; 
 
class MyPackageClass {  
  public static void main(String[] args) {  
    System.out.println("This is my package!");  
  }  
} 

 
This is my package! 
 
Save the file as MyPackageClass.java, and compile it: 

 
 
Then compile the package: 

 
 
This forces the compiler to create the "mypack" package. 
 
The -d keyword specifies the destination for where to save the class file. You can use any 
directory name, like c:/user (windows), or, if you want to keep the package within the same 
directory, you can use the dot sign ".", like in the example above. 
 
Note: The package name should be written in lower case to avoid conflict with class names. 
 
When we compiled the package in the example above, a new folder was created, called 
"mypack". 
To run the MyPackageClass.java file, write the following: 

 
 
The output will be: 

 



JAVA PROGRAMMING:  MANUAL 

68 
 

31. Java Inheritance 
 
Java Inheritance (Subclass and Superclass) 
In Java, it is possible to inherit attributes and methods from one class to another. We group 
the "inheritance concept" into two categories: 
 

 subclass (child) - the class that inherits from another class 
 superclass (parent) - the class being inherited from 

 
To inherit from a class, use the extends keyword. 
In the example below, the Car class (subclass) inherits the attributes and methods from 
the Vehicle class (superclass): 
 

class Vehicle { 
  protected String brand = "Ford"; 
  public void honk() { 
    System.out.println("Tuut, tuut!"); 
  } 
} 
 
class Car extends Vehicle { 
  private String modelName = "Mustang"; 
  public static void main(String[] args) { 
    Car myFastCar = new Car(); 
    myFastCar.honk(); 
    System.out.println(myFastCar.brand + " " + myFastCar.modelName); 
  } 
} 

 

 
 
Did you notice the protected modifier in Vehicle? 
We set the brand attribute in Vehicle to a protected access modifier. If it was set to private, 
the Car class would not be able to access it. 
Why And When To Use "Inheritance"? 
- It is useful for code reusability: reuse attributes and methods of an existing class when you 
create a new class. 
 
The final Keyword 
If you don't want other classes to inherit from a class, use the final keyword: 
 
If you try to access a final class, Java will generate an error: 

 

https://www.w3schools.com/java/java_modifiers.asp


JAVA PROGRAMMING:  MANUAL 

69 
 

The output will be something like this: 

 
 
 
 

32. Java Polymorphism 
 
Polymorphism means "many forms", and it occurs when we have many classes that are related 
to each other by inheritance. 
 
Like we specified in the previous chapter; Inheritance lets us inherit attributes and methods 
from another class. Polymorphism uses those methods to perform different tasks. This allows 
us to perform a single action in different ways. 
 
For example, think of a superclass called Animal that has a method called animalSound(). 
Subclasses of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own 
implementation of an animal sound (the pig oinks, and the cat meows, etc.): 
 

 
 
Now we can create Pig and Dog objects and call the animalSound() method on both of them: 
 

class Animal { 
  public void animalSound() { 
    System.out.println("The animal makes a sound"); 
  } 
} 
 
class Pig extends Animal { 
  public void animalSound() { 

https://www.w3schools.com/java/java_inheritance.asp


JAVA PROGRAMMING:  MANUAL 

70 
 

    System.out.println("The pig says: wee wee"); 
  } 
} 
 
class Dog extends Animal { 
  public void animalSound() { 
    System.out.println("The dog says: bow wow"); 
  } 
} 
 
class Main { 
  public static void main(String[] args) { 
    Animal myAnimal = new Animal(); 
    Animal myPig = new Pig(); 
    Animal myDog = new Dog(); 
         
    myAnimal.animalSound(); 
    myPig.animalSound(); 
    myDog.animalSound(); 
  } 
} 

 

 
 
Why And When To Use "Inheritance" and "Polymorphism"? 
- It is useful for code reusability: reuse attributes and methods of an existing class when you 
create a new class. 
 
 

33. Java Inner Classes 
 
In Java, it is also possible to nest classes (a class within a class). The purpose of nested 
classes is to group classes that belong together, which makes your code more readable and 
maintainable. 
 
To access the inner class, create an object of the outer class, and then create an object of 
the inner class: 
 

class OuterClass { 
  int x = 10; 
 
  class InnerClass { 
    int y = 5; 
  } 
} 
 
public class Main { 
  public static void main(String[] args) { 



JAVA PROGRAMMING:  MANUAL 

71 
 

    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.y + myOuter.x); 
  } 
} 

 
15 
 
Private Inner Class 
Unlike a "regular" class, an inner class can be private or protected. If you don't want outside 
objects to access the inner class, declare the class as private: 
 

class OuterClass { 
  int x = 10; 
  private class InnerClass { 
    int y = 5; 
  } 
} 
 
public class Main { 
  public static void main(String[] args) { 
    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.y + myOuter.x); 
  } 
} 

 
If you try to access a private inner class from an outside class, an error occurs: 

 
 
Static Inner Class 
An inner class can also be static, which means that you can access it without creating an 
object of the outer class: 
 

class OuterClass { 
  int x = 10; 
  static class InnerClass { 
    int y = 5; 
  } 
} 
public class Main { 
  public static void main(String[] args) { 
    OuterClass.InnerClass myInner = new OuterClass.InnerClass(); 
    System.out.println(myInner.y); 
  } 
} 

5 



JAVA PROGRAMMING:  MANUAL 

72 
 

Access Outer Class From Inner Class 
One advantage of inner classes, is that they can access attributes and methods of the outer 
class: 
 

class OuterClass { 
  int x = 10;  
 
  class InnerClass { 
    public int myInnerMethod() { 
      return x; 
    } 
  } 
} 
 
public class Main { 
  public static void main(String[] args) { 
    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.myInnerMethod()); 
  } 
} 

 
10 
 
 
 

34. Java Abstraction 
 
Abstract Classes and Methods 
Data abstraction is the process of hiding certain details and showing only essential 
information to the user. 
 
Abstraction can be achieved with either abstract classes or interfaces . 
The abstract keyword is a non-access modifier, used for classes and methods: 
 

 Abstract class: is a restricted class that cannot be used to create objects (to access it, it 
must be inherited from another class). 

 Abstract method: can only be used in an abstract class, and it does not have a body. The 
body is provided by the subclass (inherited from). 

 
An abstract class can have both abstract and regular methods: 

 
 
From the example above, it is not possible to create an object of the Animal class: 

 

https://www.w3schools.com/java/java_interface.asp


JAVA PROGRAMMING:  MANUAL 

73 
 

To access the abstract class, it must be inherited from another class. Let's convert the Animal 
class we used in the Polymorphism chapter to an abstract class: 
 

// Abstract class 
abstract class Animal { 
  // Abstract method (does not have a body) 
  public abstract void animalSound(); 
  // Regular method 
  public void sleep() { 
    System.out.println("Zzz"); 
  } 
} 
 
// Subclass (inherit from Animal) 
class Pig extends Animal { 
  public void animalSound() { 
    // The body of animalSound() is provided here 
    System.out.println("The pig says: wee wee"); 
  } 
} 
 
class Main { 
  public static void main(String[] args) { 
    Pig myPig = new Pig(); // Create a Pig object 
    myPig.animalSound(); 
    myPig.sleep(); 
  } 
} 

 

 
 
Why And When To Use Abstract Classes and Methods? 
To achieve security - hide certain details and only show the important details of an object. 
 
 

35. Interfaces 
 
Another way to achieve abstraction in Java, is with interfaces. 
An interface is a completely "abstract class" that is used to group related methods with empty 
bodies: 

 
To access the interface methods, the interface must be "implemented" (kinda like inherited) 
by another class with the implements keyword (instead of extends). The body of the interface 
method is provided by the "implement" class: 
 

https://www.w3schools.com/java/java_abstract.asp


JAVA PROGRAMMING:  MANUAL 

74 
 

interface Animal { 
  public void animalSound(); // interface method (does not have a body) 
  public void sleep(); // interface method (does not have a body) 
} 
 
class Pig implements Animal { 
  public void animalSound() { 
    System.out.println("The pig says: wee wee"); 
  } 
  public void sleep() { 
    System.out.println("Zzz"); 
  } 
} 
 
class Main { 
  public static void main(String[] args) { 
    Pig myPig = new Pig(); 
    myPig.animalSound(); 
    myPig.sleep(); 
  } 
} 

 

 
 
Notes on Interfaces: 
 
 Like abstract classes, interfaces cannot be used to create objects (in the example above, 

it is not possible to create an "Animal" object in the MyMainClass) 

 Interface methods do not have a body - the body is provided by the "implement" class 

 On implementation of an interface, you must override all of its methods 

 Interface methods are by default abstract and public 

 Interface attributes are by default public, static and final 

 An interface cannot contain a constructor (as it cannot be used to create objects) 

Why And When To Use Interfaces? 
 
1. To achieve security - hide certain details and only show the important details of an object 

(interface). 
2. Java does not support "multiple inheritance" (a class can only inherit from one superclass). 

However, it can be achieved with interfaces, because the class can implement multiple 
interfaces. Note: To implement multiple interfaces, separate them with a comma (see 
example below). 

 
  



JAVA PROGRAMMING:  MANUAL 

75 
 

Multiple Interfaces 
To implement multiple interfaces, separate them with a comma: 
 

interface FirstInterface { 
  public void myMethod(); // interface method 
} 
 
interface SecondInterface { 
  public void myOtherMethod(); // interface method 
} 
 
// DemoClass "implements" FirstInterface and SecondInterface 
class DemoClass implements FirstInterface, SecondInterface { 
  public void myMethod() { 
    System.out.println("Some text.."); 
  } 
  public void myOtherMethod() { 
    System.out.println("Some other text..."); 
  } 
} 
 
class Main { 
  public static void main(String[] args) { 
    DemoClass myObj = new DemoClass(); 
    myObj.myMethod(); 
    myObj.myOtherMethod(); 
  } 
} 

 

 
 
 
 

36. Java Enums 
 
Enums 
An enum is a special "class" that represents a group of constants (unchangeable variables, 
like final variables). 
 
To create an enum, use the enum keyword (instead of class or interface), and separate the 
constants with a comma. Note that they should be in uppercase letters: 

 
You can access enum constants with the dot syntax: 
 
  



JAVA PROGRAMMING:  MANUAL 

76 
 

enum Level { 
  LOW, 
  MEDIUM, 
  HIGH 
} 
 
public class Main {  
  public static void main(String[] args) {  
    Level myVar = Level.MEDIUM;  
    System.out.println(myVar);  
  }  
} 

 
MEDIUM 
 
Enum is short for "enumerations", which means "specifically listed". 
 
Enum inside a Class 
You can also have an enum inside a class: 
 

public class Main {  
  enum Level { 
    LOW, 
    MEDIUM, 
    HIGH 
  } 
 
  public static void main(String[] args) {  
    Level myVar = Level.MEDIUM;  
    System.out.println(myVar);  
  }  
} 

 
MEDIUM 
 
Enum in a Switch Statement 
Enums are often used in switch statements to check for corresponding values: 
 

enum Level { 
  LOW, 
  MEDIUM, 
  HIGH 
} 
 
public class Main {  
  public static void main(String[] args) { 
    Level myVar = Level.MEDIUM;  
                 
    switch(myVar) { 
      case LOW: 
        System.out.println("Low level"); 



JAVA PROGRAMMING:  MANUAL 

77 
 

        break; 
      case MEDIUM: 
        System.out.println("Medium level"); 
        break; 
      case HIGH: 
        System.out.println("High level"); 
        break; 
    } 
  } 
} 

 
Medium level 
 
Loop Through an Enum 
The enum type has a values() method, which returns an array of all enum constants. This 
method is useful when you want to loop through the constants of an enum: 
 

enum Level { 
  LOW, 
  MEDIUM, 
  HIGH 
} 
 
public class Main {  
  public static void main(String[] args) {  
    for (Level myVar : Level.values()) { 
      System.out.println(myVar); 
    } 
  }  
} 

 

 
 
Difference between Enums and Classes 
An enum can, just like a class, have attributes and methods. The only difference is that enum 
constants are public, static and final (unchangeable - cannot be overridden). 
An enum cannot be used to create objects, and it cannot extend other classes (but it can 
implement interfaces). 
 
Why And When To Use Enums? 
Use enums when you have values that you know aren't going to change, like month days, 
days, colors, deck of cards, etc. 
 
 
  



JAVA PROGRAMMING:  MANUAL 

78 
 

37. Java User Input (Scanner) 
 
Java User Input 
The Scanner class is used to get user input, and it is found in the java.util package. 
 
To use the Scanner class, create an object of the class and use any of the available methods 
found in the Scanner class documentation. In our example, we will use the nextLine() method, 
which is used to read Strings: 
 

import java.util.Scanner; // import the Scanner class  
 
class Main { 
  public static void main(String[] args) { 
    Scanner myObj = new Scanner(System.in); 
    String userName; 
     
    // Enter username and press Enter 
    System.out.println("Enter username");  
    userName = myObj.nextLine();    
        
    System.out.println("Username is: " + userName);         
  } 
} 

 
Enter username 
 
Input Types 
In the example above, we used the nextLine() method, which is used to read Strings. To read 
other types, look at the table below: 
 

Method Description 

nextBoolean() Reads a boolean value from the user 

nextByte() Reads a byte value from the user 

nextDouble() Reads a double value from the user 

nextFloat() Reads a float value from the user 

nextInt() Reads a int value from the user 

nextLine() Reads a String value from the user 

nextLong() Reads a long value from the user 

nextShort() Reads a short value from the user 

 
  



JAVA PROGRAMMING:  MANUAL 

79 
 

In the example below, we use different methods to read data of various types: 
 

import java.util.Scanner; 
 
class Main { 
  public static void main(String[] args) { 
    Scanner myObj = new Scanner(System.in); 
 
    System.out.println("Enter name, age and salary:"); 
 
    // String input 
    String name = myObj.nextLine(); 
 
    // Numerical input 
    int age = myObj.nextInt(); 
    double salary = myObj.nextDouble(); 
 
    // Output input by user 
    System.out.println("Name: " + name);  
    System.out.println("Age: " + age);  
    System.out.println("Salary: " + salary);  
  } 
} 

 
Enter name, age and salary: 
 
 

38. Java Date and Time 
 
Java Dates 
Java does not have a built-in Date class, but we can import the java.time package to work with 
the date and time API. The package includes many date and time classes. For example: 
 

Class Description 

LocalDate Represents a date (year, month, day (yyyy-MM-dd)) 

LocalTime 
Represents a time (hour, minute, second and nanoseconds (HH-
mm-ss-ns)) 

LocalDateTime Represents both a date and a time (yyyy-MM-dd-HH-mm-ss-ns) 

DateTimeFormatter Formatter for displaying and parsing date-time objects 

 
 
  



JAVA PROGRAMMING:  MANUAL 

80 
 

Display Current Date 
To display the current date, import the java.time.LocalDate class, and use its now() method: 
 

import java.time.LocalDate;  // import the LocalDate class 
 
public class Main {   
  public static void main(String[] args) {   
    LocalDate myObj = LocalDate.now();  // Create a date object 
    System.out.println(myObj);  // Display the current date 
  }   
} 

 
2023-06-14 
 
Display Current Time 
To display the current time (hour, minute, second, and nanoseconds), import 
the java.time.LocalTime class, and use its now() method: 
 

import java.time.LocalTime;  // import the LocalTime class 
 
public class Main {   
  public static void main(String[] args) {   
    LocalTime myObj = LocalTime.now(); 
    System.out.println(myObj); 
  }   
} 

 
16:21:12.344163 
 
Display Current Date and Time 
To display the current date and time, import the java.time.LocalDateTime class, and use 
its now() method: 
 

import java.time.LocalDateTime;  // import the LocalDateTime class 
 
public class Main {   
  public static void main(String[] args) {   
    LocalDateTime myObj = LocalDateTime.now(); 
    System.out.println(myObj); 
  }   
} 

 
2023-06-14T16:22:13.743240 
 
Formatting Date and Time 
The "T" in the example above is used to separate the date from the time. You can use 
the DateTimeFormatter class with the ofPattern() method in the same package to format or 
parse date-time objects. The following example will remove both the "T" and nanoseconds 
from the date-time: 
 
  



JAVA PROGRAMMING:  MANUAL 

81 
 

import java.time.LocalDateTime;  // Import the LocalDateTime class 
import java.time.format.DateTimeFormatter;  // Import the DateTimeFormatter class 
 
public class Main { 
  public static void main(String[] args) {   
    LocalDateTime myDateObj = LocalDateTime.now();   
    System.out.println("Before formatting: " + myDateObj);   
    DateTimeFormatter myFormatObj = DateTimeFormatter.ofPattern("dd-MM-yyyy 
HH:mm:ss");   
     
    String formattedDate = myDateObj.format(myFormatObj);   
    System.out.println("After formatting: " + formattedDate);   
  }   
} 

 

 
 
The ofPattern() method accepts all sorts of values, if you want to display the date and time in 
a different format. For example: 
 

No Value Example 

1 yyyy-MM-dd "1988-09-29" 

2 dd/MM/yyyy "29/09/1988" 

3 dd-MMM-yyyy "29-Sep-1988" 

4 E, MMM dd yyyy "Thu, Sep 29 1988" 

 
No 1: 
 

import java.time.LocalDateTime;  // Import the LocalDateTime class 
import java.time.format.DateTimeFormatter;  // Import the DateTimeFormatter class 
 
public class Main { 
  public static void main(String[] args) {   
    LocalDateTime myDateObj = LocalDateTime.now();   
    System.out.println("Before formatting: " + myDateObj);   
    DateTimeFormatter myFormatObj = DateTimeFormatter.ofPattern("dd-MM-yyyy 
HH:mm:ss");   
     
    String formattedDate = myDateObj.format(myFormatObj);   
    System.out.println("After formatting: " + formattedDate);   
  }   
} 

 
Before Formatting: 2023-06-14T16:27:40.591123 
After Formatting: 14-06-2023 16:27:40 



JAVA PROGRAMMING:  MANUAL 

82 
 

No 2: 
 

import java.time.LocalDateTime;  // Import the LocalDateTime class 
import java.time.format.DateTimeFormatter;  // Import the DateTimeFormatter class 
 
public class Main { 
  public static void main(String[] args) {   
    LocalDateTime myDateObj = LocalDateTime.now();   
    System.out.println("Before Formatting: " + myDateObj);   
    DateTimeFormatter myFormatObj = DateTimeFormatter.ofPattern("dd/MM/yyyy 
HH:mm:ss");   
     
    String formattedDate = myDateObj.format(myFormatObj);   
    System.out.println("After Formatting: " + formattedDate);   
  }   
} 

 
Before Formatting: 2023-06-14T16:30:58.202952 
After Formatting: 14/06/2023 16:30:58 
 
No 3: 
 

import java.time.LocalDateTime;  // Import the LocalDateTime class 
import java.time.format.DateTimeFormatter;  // Import the DateTimeFormatter class 
 
public class Main { 
  public static void main(String[] args) {   
    LocalDateTime myDateObj = LocalDateTime.now();   
    System.out.println("Before Formatting: " + myDateObj);   
    DateTimeFormatter myFormatObj = DateTimeFormatter.ofPattern("dd-MMM-yyyy 
HH:mm:ss");   
     
    String formattedDate = myDateObj.format(myFormatObj);   
    System.out.println("After Formatting: " + formattedDate);   
  }   
} 

 
Before Formatting: 2023-06-14T16:31:55.262039 
After Formatting: 14-Jun-2023 16:31:55 
 
No 4: 
 

import java.time.LocalDateTime;  // Import the LocalDateTime class 
import java.time.format.DateTimeFormatter;  // Import the DateTimeFormatter class 
 
public class Main { 
  public static void main(String[] args) {   
    LocalDateTime myDateObj = LocalDateTime.now();   
    System.out.println("Before Formatting: " + myDateObj);   
    DateTimeFormatter myFormatObj = DateTimeFormatter.ofPattern("E, MMM dd yyyy 
HH:mm:ss");   



JAVA PROGRAMMING:  MANUAL 

83 
 

     
    String formattedDate = myDateObj.format(myFormatObj);   
    System.out.println("After Formatting: " + formattedDate);   
  }   
} 

 
Before Formatting: 2023-06-14T16:32:24.856978 
After Formatting: Wed, Jun 14 2023 16:32:24 
 
 

39. Java ArrayList 
 
The ArrayList class is a resizable array, which can be found in the java.util package. 
 
The difference between a built-in array and an ArrayList in Java, is that the size of an array 
cannot be modified (if you want to add or remove elements to/from an array, you have to 
create a new one). While elements can be added and removed from an ArrayList whenever 
you want.  
 
Create an ArrayList object called cars that will store strings: 
 

 
 
Add Items 
The ArrayList class has many useful methods. For example, to add elements to the ArrayList, 
use the add() method: 
 

import java.util.ArrayList; 
 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    System.out.println(cars); 
  }  
} 

 
[Volvo, BMW, Ford, Mazda] 
 
  



JAVA PROGRAMMING:  MANUAL 

84 
 

Access an Item 
To access an element in the ArrayList, use the get() method and refer to the index number: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    System.out.println(cars.get(0)); 
  }  
} 
 

Volvo 
 
Change an Item 
To modify an element, use the set() method and refer to the index number: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    cars.set(0, "Opel"); 
    System.out.println(cars); 
  }  
} 
 

[Opel, BMW, Ford, Mazda] 
 
Remove an Item 
To remove an element, use the remove() method and refer to the index number: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    cars.remove(0); 
    System.out.println(cars); 
  }  
} 
 

[BMW, Ford, Mazda] 



JAVA PROGRAMMING:  MANUAL 

85 
 

To remove all the elements in the ArrayList, use the clear() method: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    cars.clear(); 
    System.out.println(cars); 
  }  
} 
 

[] 
 
ArrayList Size 
To find out how many elements an ArrayList have, use the size method: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    System.out.println(cars.size()); 
  }  
} 
 

4 
 
Loop Through an ArrayList 
Loop through the elements of an ArrayList with a for loop, and use the size() method to 
specify how many times the loop should run: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    for (int i = 0; i < cars.size(); i++) { 
      System.out.println(cars.get(i)); 
    } 
  }  
} 

  



JAVA PROGRAMMING:  MANUAL 

86 
 

You can also loop through an ArrayList with the for-each loop: 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    for (String i : cars) { 
      System.out.println(i); 
    } 
  }  
} 

 

 
 
Other Types 
Elements in an ArrayList are actually objects. In the examples above, 
we created elements (objects) of type "String". Remember that a 
String in Java is an object (not a primitive type). To use other types, 
such as int, you must specify an equivalent wrapper class: Integer. For 
other primitive types, use: Boolean for boolean, Character for 
char, Double for double, etc: 
 
 
Create an ArrayList to store numbers (add elements of type Integer): 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<Integer> myNumbers = new ArrayList<Integer>(); 
    myNumbers.add(10); 
    myNumbers.add(15); 
    myNumbers.add(20); 
    myNumbers.add(25); 
    for (int i : myNumbers) { 
      System.out.println(i); 
    } 
  }  
} 

 

 
  



JAVA PROGRAMMING:  MANUAL 

87 
 

Sort an ArrayList 
Another useful class in the java.util package is the Collections class, which include 
the sort() method for sorting lists alphabetically or numerically. 
 
Sort an ArrayList of Strings: 
 

import java.util.ArrayList; 
import java.util.Collections; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
     
    Collections.sort(cars); 
 
    for (String i : cars) { 
      System.out.println(i); 
    } 
  }  
} 

 

 
 
Sort an ArrayList of Integers: 
 

import java.util.ArrayList; 
import java.util.Collections; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<Integer> myNumbers = new ArrayList<Integer>(); 
    myNumbers.add(33); 
    myNumbers.add(15); 
    myNumbers.add(20); 
    myNumbers.add(34); 
    myNumbers.add(8); 
    myNumbers.add(12); 
 
    Collections.sort(myNumbers); 
 
    for (int i : myNumbers) { 
      System.out.println(i); 
    } 
  }  
} 

  



JAVA PROGRAMMING:  MANUAL 

88 
 

40. Java LinkedList 
 
Java LinkedList 
In the previous chapter, you learned about the ArrayList class. The LinkedList class is almost 
identical to the ArrayList: 

 

import java.util.LinkedList; 
public class Main {  
  public static void main(String[] args) {  
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    System.out.println(cars); 
  }  
} 

 
[Volvo, BMW, Ford, Mazda] 
 
ArrayList vs. LinkedList 

 
The LinkedList class is a collection which can contain many objects of the same type, just like 
the ArrayList. 
The LinkedList class has all of the same methods as the ArrayList class because they both 
implement the List interface. This means that you can add items, change items, remove items 
and clear the list in the same way. 
However, while the ArrayList class and the LinkedList class can be used in the same way, they 
are built very differently. 
 
How the ArrayList works 
The ArrayList class has a regular array inside it. When an element is added, it is placed into the 
array. If the array is not big enough, a new, larger array is created to replace the old one and 
the old one is removed. 
 
How the LinkedList works 
The LinkedList stores its items in "containers." The list has a link to the first container and each 
container has a link to the next container in the list. To add an element to the list, the element 
is placed into a new container and that container is linked to one of the other containers in 
the list. 
 
LinkedList Methods 
For many cases, the ArrayList is more efficient as it is common to need access to random items 
in the list, but the LinkedList provides several methods to do certain operations more 
efficiently: 
 
  

https://www.w3schools.com/java/java_arraylist.asp


JAVA PROGRAMMING:  MANUAL 

89 
 

addFirst() 
Adds an item to the beginning of the list. 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
     
    // Use addFirst() to add the item to the beginning 
    cars.addFirst("Mazda"); 
    System.out.println(cars); 
  } 
} 

[Mazda, Volvo, BMW, Ford] 
 
addLast() 
Add an item to the end of the list. 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
     
    // Use addLast() to add the item to the end 
    cars.addLast("Mazda"); 
    System.out.println(cars); 
  } 
} 

[Volvo, BMW, Ford, Mazda] 
 
removeFirst() 
Remove an item from the beginning of the list. 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
     
    // Use removeFirst() remove the first item from the list 
    cars.removeFirst(); 
    System.out.println(cars); 
  } 
} 

[BMW, Ford, Mazda] 



JAVA PROGRAMMING:  MANUAL 

90 
 

removeLast() 
Remove an item from the end of the list. 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
     
    // Use removeLast() remove the last item from the list 
    cars.removeLast(); 
    System.out.println(cars); 
  } 
} 

[Volvo, BMW, Ford] 
 
getFirst() 
Get the item at the beginning of the list 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
     
    // Use getFirst() to display the first item in the list 
    System.out.println(cars.getFirst()); 
  } 
} 

Volvo 
 
getLast() 
Get the item at the end of the list 

import java.util.LinkedList; 
public class Main { 
  public static void main(String[] args) { 
    LinkedList<String> cars = new LinkedList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
     
    // Use getLast() to display the last item in the list 
    System.out.println(cars.getLast()); 
  } 
} 

Mazda 



JAVA PROGRAMMING:  MANUAL 

91 
 

41. Java HashMap 
 
Java HashMap 
In the ArrayList chapter, you learned that Arrays store items as an ordered collection, and you 
have to access them with an index number (int type). A HashMap however, store items in 
"key/value" pairs, and you can access them by an index of another type (e.g. a String). 
 
One object is used as a key (index) to another object (value). It can store different 
types: String keys and Integer values, or the same type, like: String keys and String values: 
 
Example: 
Create a HashMap object called capitalCities that will store String keys and String values: 
 

 
 
Add Items 
The HashMap class has many useful methods. For example, to add items to it, use 
the put() method: 
 

import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
    System.out.println(capitalCities);  
  } 
} 

{USA=Washington DC, Norway=Oslo, England=London, Germany=Berlin} 
 
Access an Item 
To access a value in the HashMap, use the get() method and refer to its key: 
 

import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
    System.out.println(capitalCities.get("England")); 
  } 
} 

London 
  



JAVA PROGRAMMING:  MANUAL 

92 
 

Remove an Item 
To remove an item, use the remove() method and refer to the key: 
 

import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
    capitalCities.remove("England"); 
    System.out.println(capitalCities);  
  } 
} 

{USA=Washington DC, Norway=Oslo, Germany=Berlin} 
 
To remove all items, use the clear() method: 
 

import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
    capitalCities.clear(); 
    System.out.println(capitalCities);  
  } 
} 

{} 
 
HashMap Size 
To find out how many items there are, use the size() method: 
 

import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
    System.out.println(capitalCities.size()); 
  } 
} 

4 
 
  



JAVA PROGRAMMING:  MANUAL 

93 
 

Loop Through a HashMap 
Loop through the items of a HashMap with a for-each loop. 
Note: Use the keySet() method if you only want the keys, and use the values() method if you 
only want the values: 
 

// Print keys 
import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
     
    for (String i : capitalCities.keySet()) { 
      System.out.println(i); 
    } 
  } 
} 

 
 

// Print values 
import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
     
    for (String i : capitalCities.values()) { 
      System.out.println(i); 
    } 
  } 
} 

 
 
 
  



JAVA PROGRAMMING:  MANUAL 

94 
 

// Print keys and values 
import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    HashMap<String, String> capitalCities = new HashMap<String, String>(); 
    capitalCities.put("England", "London"); 
    capitalCities.put("Germany", "Berlin"); 
    capitalCities.put("Norway", "Oslo"); 
    capitalCities.put("USA", "Washington DC"); 
     
    for (String i : capitalCities.keySet()) { 
      System.out.println("key: " + i + " value: " + capitalCities.get(i)); 
    } 
  } 
} 

 
 
Other Types 
Keys and values in a HashMap are actually objects. In the examples 
above, we used objects of type "String". Remember that a String in 
Java is an object (not a primitive type). To use other types, such as 
int, you must specify an equivalent wrapper class: Integer. For other 
primitive types, use: Boolean for boolean, Character for 
char, Double for double, etc: 
 
 
Example: 
Create a HashMap object called people that will store String keys and Integer values: 
 

// Import the HashMap class 
import java.util.HashMap; 
public class Main { 
  public static void main(String[] args) { 
    // Create a HashMap object called people 
    HashMap<String, Integer> people = new HashMap<String, Integer>(); 
    // Add keys and values (Name, Age) 
    people.put("John", 32); 
    people.put("Steve", 30); 
    people.put("Angie", 33); 
    for (String i : people.keySet()) { 
      System.out.println("Name: " + i + " Age: " + people.get(i)); 
    } 
  } 
} 

 
 



JAVA PROGRAMMING:  MANUAL 

95 
 

42. Java HashSet 
 
A HashSet is a collection of items where every item is unique, and it is found in 
the java.util package: 
 
Example:  
Create a HashSet object called cars that will store strings: 
 

 
 
Add Items 
The HashSet class has many useful methods. For example, to add items to it, use 
the add() method: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    System.out.println(cars); 
  } 
} 

[Volvo, Mazda, Ford, BMW] 
In the example above, even though BMW is added twice it only appears once in the set 
because every item in a set has to be unique. 
 
Check If an Item Exists 
To check whether an item exists in a HashSet, use the contains() method: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    System.out.println(cars.contains("Mazda")); 
  } 
} 

True 



JAVA PROGRAMMING:  MANUAL 

96 
 

Remove an Item 
To remove an item, use the remove() method: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    cars.remove("Volvo"); 
    System.out.println(cars); 
  } 
} 

[Mazda, Ford, BMW] 
 

To remove all items, use the clear() method: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    cars.clear(); 
    System.out.println(cars); 
  } 
} 

[] 
 

HashSet Size 
To find out how many items there are, use the size method: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    System.out.println(cars.size()); 
  } 
} 

4 



JAVA PROGRAMMING:  MANUAL 

97 
 

Loop Through a HashSet 
Loop through the items of an HashSet with a for-each loop: 
 

// Import the HashSet class 
import java.util.HashSet; 
public class Main { 
  public static void main(String[] args) { 
    HashSet<String> cars = new HashSet<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("BMW"); 
    cars.add("Mazda"); 
    for (String i : cars) { 
      System.out.println(i); 
    } 
  } 
} 

 
 
Other Types 
Items in an HashSet are actually objects. In the examples above, we 
created items (objects) of type "String". Remember that a String in 
Java is an object (not a primitive type). To use other types, such as int, 
you must specify an equivalent wrapper class: Integer. For other 
primitive types, use: Boolean for boolean, Character for 
char, Double for double, etc: 
 
Example 
Use a HashSet that stores Integer objects: 
 

// Import the HashSet class 
import java.util.HashSet; 
 
public class Main { 
  public static void main(String[] args) { 
 
    // Create a HashSet object called numbers 
    HashSet<Integer> numbers = new HashSet<Integer>(); 
 
    // Add values to the set 
    numbers.add(4); 
    numbers.add(7); 
    numbers.add(8); 
 
 
 



JAVA PROGRAMMING:  MANUAL 

98 
 

    // Show which numbers between 1 and 10 are in the set 
    for(int i = 1; i <= 10; i++) { 
      if(numbers.contains(i)) { 
        System.out.println(i + " was found in the set."); 
      } else { 
        System.out.println(i + " was not found in the set."); 
      } 
    } 
  } 
} 
 

 
 

 

43. Java Iterator 
 
An Iterator is an object that can be used to loop through collections, 
like ArrayList and HashSet. It is called an "iterator" because "iterating" is the technical term 
for looping. 
To use an Iterator, you must import it from the java.util package. 
 
Getting an Iterator 
The iterator() method can be used to get an Iterator for any collection: 
 

import java.util.ArrayList; 
import java.util.Iterator; 
public class Main { 
  public static void main(String[] args) { 
    // Make a collection 
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
    // Get the iterator 
    Iterator<String> it = cars.iterator(); 
    // Print the first item 
    System.out.println(it.next()); 
  } 
} 

Volvo 

https://www.w3schools.com/java/java_arraylist.asp
https://www.w3schools.com/java/java_hashset.asp


JAVA PROGRAMMING:  MANUAL 

99 
 

Looping Through a Collection 
To loop through a collection, use the hasNext() and next() methods of the Iterator: 
 

import java.util.ArrayList; 
import java.util.Iterator; 
 
public class Main { 
  public static void main(String[] args) { 
   
    // Make a collection 
    ArrayList<String> cars = new ArrayList<String>(); 
    cars.add("Volvo"); 
    cars.add("BMW"); 
    cars.add("Ford"); 
    cars.add("Mazda"); 
   
    // Get the iterator 
    Iterator<String> it = cars.iterator(); 
     
    // Loop through a collection 
    while(it.hasNext()) { 
      System.out.println(it.next()); 
    } 
  } 
} 

 
Removing Items from a Collection 
Iterators are designed to easily change the collections that they loop through. 
The remove() method can remove items from a collection while looping. 
 

Use an iterator to remove numbers less than 10 from a collection: 
 

import java.util.ArrayList; 
import java.util.Iterator; 
public class Main { 
  public static void main(String[] args) { 
    ArrayList<Integer> numbers = new ArrayList<Integer>(); 
    numbers.add(12); 
    numbers.add(8); 
    numbers.add(2); 
    numbers.add(23); 
    Iterator<Integer> it = numbers.iterator(); 
    while(it.hasNext()) { 
      Integer i = it.next(); 
      if(i < 10) { 
        it.remove(); 
      } 
    } 
    System.out.println(numbers); 
  } 
} 

[12, 23] 



JAVA PROGRAMMING:  MANUAL 

100 
 

44. Java Wrapper Classes 
 
Wrapper classes provide a way to use primitive data types (int, boolean, etc..) as objects. 
The table below shows the primitive type and the equivalent wrapper class: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sometimes you must use wrapper classes, for example when working with Collection 
objects, such as ArrayList, where primitive types cannot be used (the list can only store 
objects): 
 

import java.util.ArrayList; 
public class Main {  
  public static void main(String[] args) {  
    ArrayList<Integer> myNumbers = new ArrayList<Integer>(); 
    myNumbers.add(10); 
    myNumbers.add(15); 
    myNumbers.add(20); 
    myNumbers.add(25); 
    for (int i : myNumbers) { 
      System.out.println(i); 
    } 
  }  
} 

 
 
Creating Wrapper Objects 
To create a wrapper object, use the wrapper class instead of the primitive type. To get the 
value, you can just print the object: 
 
  



JAVA PROGRAMMING:  MANUAL 

101 
 

public class Main {  
  public static void main(String[] args) {  
    Integer myInt = 5;  
    Double myDouble = 5.99;  
    Character myChar = 'A';  
    System.out.println(myInt); 
    System.out.println(myDouble); 
    System.out.println(myChar); 
  } 
} 

 
 
Since you're now working with objects, you can use certain methods to get information 
about the specific object. 
 
For example, the following methods are used to get the value associated with the 
corresponding wrapper object:  
intValue(), byteValue(), shortValue(), longValue(), floatValue(), doubleValue(), charValue(),  
booleanValue(). 
 

This example will output the same result as the example above: 
 

public class Main {  
  public static void main(String[] args) {  
    Integer myInt = 5;  
    Double myDouble = 5.99;  
    Character myChar = 'A';  
    System.out.println(myInt.intValue()); 
    System.out.println(myDouble.doubleValue()); 
    System.out.println(myChar.charValue()); 
  } 
} 

 
 

Another useful method is the toString() method, which is used to convert wrapper objects to 
strings. 
In the following example, we convert an Integer to a String, and use the length() method of 
the String class to output the length of the "string": 
 

public class Main {  
  public static void main(String[] args) {  
    Integer myInt = 100;  
    String myString = myInt.toString(); 
    System.out.println(myString.length()); 
  } 
} 

3 



JAVA PROGRAMMING:  MANUAL 

102 
 

45. Java Exceptions 
 
When executing Java code, different errors can occur: coding errors made by the programmer, 
errors due to wrong input, or other unforeseeable things. 
 
When an error occurs, Java will normally stop and generate an error message. The technical 
term for this is: Java will throw an exception (throw an error). 
 
Java try and catch 
The try statement allows you to define a block of code to be tested for errors while it is being 
executed. 
The catch statement allows you to define a block of code to be executed, if an error occurs in 
the try block. 
The try and catch keywords come in pairs: 
 
This will generate an error, because myNumbers[10] does not exist. 

 

public class Main { 
  public static void main(String[] args) { 
    int[] myNumbers = {1, 2, 3}; 
    System.out.println(myNumbers[10]); 
  } 
} 

The output will be something like this: 
 

 
 
If an error occurs, we can use try-catch to catch the error and execute some code to handle it: 
 

public class Main { 
  public static void main(String[] args) { 
    try { 
      int[] myNumbers = {1, 2, 3}; 
      System.out.println(myNumbers[10]); 
    } catch (Exception e) { 
      System.out.println("Something went wrong."); 
    } 
  } 
} 

Something went wrong. 
 
Finally 
The finally statement lets you execute code, after try...catch, regardless of the result: 
 

public class Main { 
  public static void main(String[] args) { 
    try { 
      int[] myNumbers = {1, 2, 3}; 
      System.out.println(myNumbers[10]); 



JAVA PROGRAMMING:  MANUAL 

103 
 

    } catch (Exception e) { 
      System.out.println("Something went wrong."); 
    } finally { 
      System.out.println("The 'try catch' is finished."); 
    } 
  } 
} 

 
 
The throw keyword 
The throw statement allows you to create a custom error. 
The throw statement is used together with an exception type. There are many exception 
types available in Java:  
ArithmeticException, FileNotFoundException, ArrayIndexOutOfBoundsException, SecurityE
xception, etc: 
 
Throw an exception if age is below 18 (print "Access denied"). If age is 18 or older, print 
"Access granted": 
 

public class Main { 
  static void checkAge(int age) {  
    if (age < 18) { 
      throw new ArithmeticException("Access denied - You must be at least 18 years old.");  
    } else { 
      System.out.println("Access granted - You are old enough!");  
    } 
 }  
 public static void main(String[] args) {  
   checkAge(15);  
 }  
} 

 
 
If age was 20, you would not get an exception: 
 

public class Main { 
  static void checkAge(int age) {  
    if (age < 18) { 
      throw new ArithmeticException("Access denied - You must be at least 18 years old.");  
    } else { 
      System.out.println("Access granted - You are old enough!");  
    } 
 }  
  public static void main(String[] args) {  
   checkAge(20);  
 }  
} 

Access granted - You are old enough! 



JAVA PROGRAMMING:  MANUAL 

104 
 

46. Java Regular Expressions 
 
A regular expression is a sequence of characters that forms a search pattern. When you search 
for data in a text, you can use this search pattern to describe what you are searching for. 
 
A regular expression can be a single character, or a more complicated pattern. 
 
Regular expressions can be used to perform all types of text search and text 
replace operations. 
 
Java does not have a built-in Regular Expression class, but we can import 
the java.util.regex package to work with regular expressions. The package includes the 
following classes: 
 

 Pattern Class - Defines a pattern (to be used in a search) 

 Matcher Class - Used to search for the pattern 

 PatternSyntaxException Class - Indicates syntax error in a regular expression pattern 
 
Find out if there are any occurrences of the word "Java" in a sentence: 
 

import java.util.regex.Matcher; 
import java.util.regex.Pattern; 
public class Main { 
  public static void main(String[] args) { 
    Pattern pattern = Pattern.compile("Java", Pattern.CASE_INSENSITIVE); 
    Matcher matcher = pattern.matcher("Visit Java!"); 
    boolean matchFound = matcher.find(); 
    if(matchFound) { 
      System.out.println("Match found"); 
    } else { 
      System.out.println("Match not found"); 
    } 
  } 
} 

Match found 
 
Example Explained: 
 
In this example, The word "Java" is being searched for in a sentence. 
 
First, the pattern is created using the Pattern.compile() method. The first parameter indicates 
which pattern is being searched for and the second parameter has a flag to indicates that the 
search should be case-insensitive. The second parameter is optional. 
 
The matcher() method is used to search for the pattern in a string. It returns a Matcher object 
which contains information about the search that was performed. 
 
The find() method returns true if the pattern was found in the string and false if it was not 
found. 
 
  



JAVA PROGRAMMING:  MANUAL 

105 
 

47. Java Threads 
 
Threads allows a program to operate more efficiently by doing multiple things at the same 
time. 
 
Threads can be used to perform complicated tasks in the background without interrupting the 
main program. 
 
Creating a Thread 
There are two ways to create a thread. 
It can be created by extending the Thread class and overriding its run() method: 
 
Extend Syntax 

 
Another way to create a thread is to implement the Runnable interface: 

 
 
Running Threads 
If the class extends the Thread class, the thread can be run by creating an instance of the class 
and call its start() method: 
 

public class Main extends Thread { 
  public static void main(String[] args) { 
    Main thread = new Main(); 
    thread.start(); 
    System.out.println("This code is outside of the thread"); 
  } 
  public void run() { 
    System.out.println("This code is running in a thread"); 
  } 
} 

 
 
If the class implements the Runnable interface, the thread can be run by passing an instance 
of the class to a Thread object's constructor and then calling the thread's start() method: 
 

public class Main implements Runnable { 
  public static void main(String[] args) { 
    Main obj = new Main(); 
    Thread thread = new Thread(obj); 



JAVA PROGRAMMING:  MANUAL 

106 
 

    thread.start(); 
    System.out.println("This code is outside of the thread"); 
  } 
  public void run() { 
    System.out.println("This code is running in a thread"); 
  } 
} 

 
 
Differences between "extending" and "implementing" Threads: 
 
The major difference is that when a class extends the Thread class, you cannot extend any 
other class, but by implementing the Runnable interface, it is possible to extend from another 
class as well, like: class MyClass extends OtherClass implements Runnable. 
 
Concurrency Problems 
Because threads run at the same time as other parts of the program, there is no way to know 
in which order the code will run. When the threads and main program are reading and writing 
the same variables, the values are unpredictable. The problems that result from this are called 
concurrency problems. 
 
A code example where the value of the variable amount is unpredictable: 
 

public class Main extends Thread { 
  public static int amount = 0; 
 
  public static void main(String[] args) { 
    Main thread = new Main(); 
    thread.start(); 
    System.out.println(amount); 
    amount++; 
    System.out.println(amount); 
  } 
 
  public void run() { 
    amount++; 
  } 
} 

 
 
To avoid concurrency problems, it is best to share as few attributes between threads as 
possible. If attributes need to be shared, one possible solution is to use the isAlive() method 
of the thread to check whether the thread has finished running before using any attributes 
that the thread can change. 
  



JAVA PROGRAMMING:  MANUAL 

107 
 

public class Main extends Thread { 
  public static int amount = 0; 
  public static void main(String[] args) { 
    Main thread = new Main(); 
    thread.start(); 
    // Wait for the thread to finish 
    while(thread.isAlive()) { 
      System.out.println("Waiting..."); 
    } 
    // Update amount and print its value 
    System.out.println("Main: " + amount); 
    amount++; 
    System.out.println("Main: " + amount); 
  } 
  public void run() { 
    amount++; 
  } 
} 

 
 
 

48. Java Lambda Expressions 
 
Lambda Expressions were added in Java 8. 
 
A lambda expression is a short block of code which takes in parameters and returns a value. 
Lambda expressions are similar to methods, but they do not need a name and they can be 
implemented right in the body of a method. 
 
Expressions are limited. They have to immediately return a value, and they cannot contain 
variables, assignments or statements such as if or for. In order to do more complex operations, 
a code block can be used with curly braces. If the lambda expression needs to return a value, 
then the code block should have a return statement. 
 
Using Lambda Expressions 
Use a lambda expression in the ArrayList's forEach() method to print every item in the list: 
 

import java.util.ArrayList; 
public class Main { 
  public static void main(String[] args) { 
    ArrayList<Integer> numbers = new ArrayList<Integer>(); 
    numbers.add(5); 
    numbers.add(9); 
    numbers.add(8); 
    numbers.add(1); 
    numbers.forEach( (n) -> { System.out.println(n); } ); 
  } 
} 



JAVA PROGRAMMING:  MANUAL 

108 
 

Lambda expressions can be stored in variables if the variable's type is an interface which has 
only one method. The lambda expression should have the same number of parameters and 
the same return type as that method. Java has many of these kinds of interfaces built in, such 
as the Consumer interface (found in the java.util package) used by lists. 
 
Use Java's Consumer interface to store a lambda expression in a variable: 
 

import java.util.ArrayList; 
import java.util.function.Consumer; 
 
public class Main { 
  public static void main(String[] args) { 
    ArrayList<Integer> numbers = new ArrayList<Integer>(); 
    numbers.add(5); 
    numbers.add(9); 
    numbers.add(8); 
    numbers.add(1); 
    Consumer<Integer> method = (n) -> { System.out.println(n); }; 
    numbers.forEach( method ); 
  } 
} 

 
Create a method which takes a lambda expression as a parameter: 
 

interface StringFunction { 
  String run(String str); 
} 
 
public class Main { 
  public static void main(String[] args) { 
    StringFunction exclaim = (s) -> s + "!"; 
    StringFunction ask = (s) -> s + "?"; 
    printFormatted("Hello", exclaim); 
    printFormatted("Hello", ask); 
  } 
  public static void printFormatted(String str, StringFunction format) { 
    String result = format.run(str); 
    System.out.println(result); 
  } 
} 

 

 
 
  



JAVA PROGRAMMING:  MANUAL 

109 
 

49. Java File Handling 
 
File handling is an important part of any application. 
Java has several methods for creating, reading, updating, and deleting files. 
 
The File class from the java.io package, allows us to work with files. 
To use the File class, create an object of the class, and specify the filename or directory name: 
 

 
 
The File class has many useful methods for creating and getting information about files. 
 

 
 
 
Create a File 
To create a file in Java, you can use the createNewFile() method. This method returns a 
boolean value: true if the file was successfully created, and false if the file already exists. Note 
that the method is enclosed in a try...catch block. This is necessary because it throws 
an IOException if an error occurs (if the file cannot be created for some reason): 
 

import java.io.File;  
import java.io.IOException; 
 
public class CreateFile {   
  public static void main(String[] args) {   
    try {   
      File myObj = new File("filename.txt");   
      if (myObj.createNewFile()) {   



JAVA PROGRAMMING:  MANUAL 

110 
 

        System.out.println("File created: " + myObj.getName());   
      } else {   
        System.out.println("File already exists.");   
      }   
    } catch (IOException e) { 
      System.out.println("An error occurred."); 
      e.printStackTrace();   
    }   
  }   
} 

File created: filename.txt 
 
To create a file in a specific directory (requires permission), specify the path of the file and use 
double backslashes to escape the "\" character (for Windows).  
On Mac and Linux you can just write the path, like: /Users/name/filename.txt 
 

import java.io.File;  
import java.io.IOException; 
   
public class CreateFileDir {   
  public static void main(String[] args) {   
    try {   
      File myObj = new File("C:\\Users\\MyName\\filename.txt");   
      if (myObj.createNewFile()) {   
        System.out.println("File created: " + myObj.getName());   
        System.out.println("Absolute path: " + myObj.getAbsolutePath());   
      } else {   
        System.out.println("File already exists.");   
      }   
    } catch (IOException e) { 
      System.out.println("An error occurred."); 
      e.printStackTrace();   
    }   
  }   
} 

 
 
Write To a File 
In the following example, we use the FileWriter class together with its write() method to write 
some text to the file we created in the example above. Note that when you are done writing 
to the file, you should close it with the close() method: 
 

import java.io.FileWriter; 
import java.io.IOException; 
 
public class WriteToFile {   
  public static void main(String[] args) {   
    try {   
      FileWriter myWriter = new FileWriter("filename.txt"); 



JAVA PROGRAMMING:  MANUAL 

111 
 

      myWriter.write("Files in Java might be tricky, but it is fun enough!"); 
      myWriter.close(); 
      System.out.println("Successfully wrote to the file."); 
    } catch (IOException e) { 
      System.out.println("An error occurred."); 
      e.printStackTrace(); 
    }  
  }   
} 

Successfully wrote to the file. 
 
Read a File 
In the following example, we use the Scanner class to read the contents of the text file we 
created in the previous section: 
 

import java.io.File; 
import java.io.FileNotFoundException; 
import java.util.Scanner; 
 
public class ReadFile {   
  public static void main(String[] args) {   
    try { 
      File myObj = new File("filename.txt"); 
      Scanner myReader = new Scanner(myObj);   
      while (myReader.hasNextLine()) { 
        String data = myReader.nextLine(); 
        System.out.println(data); 
      } 
      myReader.close(); 
    } catch (FileNotFoundException e) { 
      System.out.println("An error occurred."); 
      e.printStackTrace(); 
    }  
  }   
} 

Files in Java might be tricky, but it is fun enough! 
 
Get File Information 
To get more information about a file, use any of the File methods: 
 

import java.io.File;  
 
public class GetFileInfo {   
  public static void main(String[] args) {   
    File myObj = new File("filename.txt"); 
    if (myObj.exists()) { 
      System.out.println("File name: " + myObj.getName());  
      System.out.println("Absolute path: " + myObj.getAbsolutePath());  
      System.out.println("Writeable: " + myObj.canWrite());  
      System.out.println("Readable: " + myObj.canRead());  
      System.out.println("File size in bytes: " + myObj.length()); 



JAVA PROGRAMMING:  MANUAL 

112 
 

    } else { 
      System.out.println("The file does not exist."); 
    } 
  }   
}  

 
 
Delete a File 
To delete a file in Java, use the delete() method: 
 

import java.io.File;  
 
public class DeleteFile { 
  public static void main(String[] args) {  
    File myObj = new File("filename.txt");  
    if (myObj.delete()) {  
      System.out.println("Deleted the file: " + myObj.getName()); 
    } else { 
      System.out.println("Failed to delete the file."); 
    }  
  }  
} 

Deleted the file: filename.txt 
 
Delete a Folder 
You can also delete a folder. However, it must be empty: 
 

import java.io.File;  
 
public class DeleteFolder { 
  public static void main(String[] args) {  
    File myObj = new File("C:\\Users\\MyName\\Test");  
    if (myObj.delete()) {  
      System.out.println("Deleted the folder: " + myObj.getName()); 
    } else { 
      System.out.println("Failed to delete the folder."); 
    }  
  }  
} 

Deleted the folder: Test 
 
 
 
 
 



JAVA PROGRAMMING:  MANUAL 

113 
 

50. Java How-To 
 
Add Two Numbers 
 

public class Main { 
  public static void main(String[] args) { 
    int x = 5; 
    int y = 6; 
    int sum = x + y; 
    System.out.println(sum); // Print the sum of x + y 
  } 
} 

11 
 
Add Two Numbers with User Input 
 

import java.util.Scanner;  // Import the Scanner class 
 
public class MyClass { 
  public static void main(String[] args) { 
    int x, y, sum; 
    Scanner myObj = new Scanner(System.in);  // Create a Scanner object 
    System.out.println("Type a number:"); 
    x = myObj.nextInt(); // Read user input 
 
    System.out.println("Type another number:"); 
    y = myObj.nextInt(); // Read user input 
 
    sum = x + y; 
    System.out.println("Sum is: " + sum); // Output user input 
  } 
}  

 
 
Count Number of Words in a String 
 

public class Main { 
  public static void main(String[] args) { 
    String words = "One Two Three Four"; 
    int countWords = words.split("\\s").length; 
    System.out.println(countWords); 
  } 
} 

4 
 



JAVA PROGRAMMING:  MANUAL 

114 
 

Reverse a String 
 

public class Main { 
  public static void main(String[] args) { 
    String originalStr = "Hello"; 
    String reversedStr = ""; 
    System.out.println("Original string: " + originalStr); 
         
    for (int i = 0; i < originalStr.length(); i++) { 
      reversedStr = originalStr.charAt(i) + reversedStr; 
    } 
     
    System.out.println("Reversed string: "+ reversedStr); 
  } 
} 

 
 
Calculate the Sum of an Array 
 

public class Main { 
  public static void main(String[] args) { 
    int[] myArray = {1, 5, 10, 25}; 
    int sum = 0; 
    int i;  
       
    // Loop through array elements and get the sum 
    for (i = 0; i < myArray.length; i++) { 
      sum += myArray[i]; 
    } 
    System.out.println("The sum is: " + sum); 
  } 
} 

The sum is: 41 
 
Get the Area of a Rectangle 
The area of a rectangle can be found by multiplying the length of the rectangle by the width: 
 

public class Main { 
  public static void main(String[] args) { 
    int length = 5;   
    int width = 2;   
    int area = length * width;   
    System.out.println("Area of rectangle: " + area);   
  } 
} 

Area of rectangle: 10 
 
  



JAVA PROGRAMMING:  MANUAL 

115 
 

Check Whether a Number is Even or Odd 
 

public class Main { 
  public static void main(String[] args) { 
    int number = 5; 
     
    if (number % 2 == 0) { 
      System.out.println(number + " is even."); 
    } else { 
      System.out.println(number + " is odd."); 
    } 
  } 
} 

5 is odd. 
 
 


